Математические методы принятия решений. Математические методы системного анализа и принятия решений Математическая оценка качества принятого решения

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Рефера т

Математические методы в принятии решений

Математика как наука с самого зарождения является инструментом в процессе поиска истины, и потому можно считать, что любые математические операции, даже самые простые, являются математическими методами принятия решений. В настоящее время под принятием решений понимается особый процесс человеческой деятельности, направленный на выбор наилучшего варианта (альтернативы) действий. Процессы принятия решения лежат в основе любой целенаправленной деятельности человека. Например, при создании новой техники (машин, приборов, устройств), в строительстве при проектировании новых зданий, при организации функционирования и развития социальных процессов. В связи с этим появляется потребность в руководстве по принятию решений, которые упрощали бы этот процесс и придавали решениям большую надежность. Помимо эмпирического восприятия ситуации и интуиции в наше время сложных экономических ситуаций и процессов управления предприятием руководителям требуется некоторая основа и «доказанная гарантия» принимаемого решения. Неизбежно требуется формализация процесса принятия решений. Как правило, важные решения принимаются опытными людьми, довольно далекими от математики, и особенно от ее новых методов, и опасающимися больше потерять от формализации, чем выиграть.

Следовательно, от науки требуются рекомендации по оптимальному принятию решений. Прошло то время, когда правильные решения принимались «на ощупь», методом «проб и ошибок». Сегодня для выработки такого решения требуется научный подход - слишком велики потери, связанные с ошибками. Оптимальные решения позволяют обеспечить предприятию максимально выгодные условия выпуска продукции (максимальная прибыль при минимальных трудовых затратах, материальных и трудовых ресурсах).

В настоящее время поиск оптимальных решений можно рассматривать при помощи разделов классической математики. Так, например, в математической статистике в разделе «принятие решений» изучают способы принятия или не принятия некоторой основной гипотезы при наличии конкурирующей гипотезы с учетом функции потерь. Теория принятия решений развивает методы математической статистики - методы проверки гипотез. Различные величины потерь при выборе разных гипотез приводят к результатам, отличным от тех, которые получены методами статистической проверки гипотез. Выбор менее вероятной гипотезы может оказаться более предпочтительным, если потери в случае ошибочности такого выбора окажутся меньше потерь, вызванных ошибочностью выбора более вероятной конкурирующей гипотезы. Такие задачи называют статистическими задачами принятия решений. Для решения этих задач необходимо найти минимальное значение функции риска на множестве возможных исходов, т.е. решить задачу отыскания условного экстремума. Как правило, для этих задач можно выделить цель и указать условия, т.е. ограничения, при которых они должны быть решены. Подобными задачами занимаются в разделе математики «математическое программирование», который, в свою очередь, является частью раздела «исследование операций».

В роли входных данных выступает реальная задача - произвольным образом сформулированный набор данных о проблемной ситуации. Первым этапом решения задачи является ее формулировка - приведение данных к удобному для построения модели виду. Модель - приближенное (описательное) отображение действительности. Далее по построенной модели осуществляется поиск оптимальных решений и выдача рекомендаций.

Модели можно разбить на 2 большие группы:

Детерминированные модели:

Линейное программирование;

Целочисленное программирование и комбинаторика;

Теория графов;

Потоки в сетях;

Геометрическое программирование;

Нелинейное программирование;

Математическое программирование;

Оптимальное управление.

Стохастические модели:

Теория массового обслуживания;

Теория полезности;

Теория принятия решений;

Теория игр и игровое моделирование;

Теория поиска;

Имитационное моделирование;

Динамическое моделирование.

В принятии решений необходимо найти оптимум некоторого функционала в детерминированной или стохастической форме. Следует отметить две особенности. Во-первых, математические методы принятия решений для задач, связанных с различными направлениями деятельности человека, начинают взаимное проникновение друг в друга, например, оптимизационные задачи управления при переходе от непрерывных переменных к дискретным становятся задачами математического (линейного) программирования, оценка разделяющей функции

в статистических методах принятия решений может проводиться с помощью процедур линейного или квадратичного программирования и т.д. Во-вторых, исходные числовые данные как результат измерений или наблюдений

в задачах принятия решений для реальных ситуаций не являются детерминированными, а чаще являются случайными величинами

с известными или неизвестными законами распределения, поэтому последующая обработка данных требует применения методов математической статистики, теории нечетких множеств или теории возможностей.

Математические методы в экономике и принятии решений можно разделить на несколько групп:

1. Методы оптимизации.

2. Методы, учитывающие неопределенность, прежде всего, вероятностно-статистические.

3. Методы построения и анализа имитационных моделей,

4. Методы анализа конфликтных ситуаций (теория игр).

Методы оптимизации

Оптимизация в математике - операция нахождения экстремума (минимума или максимума) целевой функции в некоторой области векторного пространства, ограниченного набором линейных или нелинейных равенств (неравенств).

Теорию и методы решения задачи оптимизации изучает математическое программирование.

Математическое программирование - это область математики, разрабатывающая теорию, численные методы решения многомерных задач с ограничениями. В отличие от классической математики, математическое программирование занимается математическими методами решения задач нахождения наилучших вариантов из всех возможных.

Постановка задачи оптимизации

В процессе проектирования ставится обычно задача определения наилучших, в некотором смысле, структуры или значений параметров объектов. Такая задача называется оптимизационной. Если оптимизация связана с расчётом оптимальных значений параметров при заданной структуре объекта, то она называется параметрической оптимизацией. Задача выбора оптимальной структуры является структурной оптимизацией.

Стандартная математическая задача оптимизации формулируется таким образом. Среди элементов ч, образующих множества Ч, найти такой элемент ч*, который обеспечивает минимальное значение f (ч*) заданной функции f(ч). Для того, чтобы корректно поставить задачу оптимизации, необходимо задать:

1. Допустимое множество - множество

решение математика игра

2. Целевую функцию - отображение;

3. Критерий поиска (max или min).

Тогда решить задачу означает одно из:

1. Показать, что.

2. Показать, что целевая функция не ограничена снизу.

Если, то найти:

Если минимизируемая функция не является выпуклой, то часто ограничиваются поиском локальных минимумов и максимумов: точек таких, что всюду в некоторой их окрестности для минимума и для максимума.

Если допустимое множество, то такая задача называется задачей безусловной оптимизации, в противном случае - задачей условной оптимизации.

Классификация методов оптимизации

Общая запись задач оптимизации задаёт большое разнообразие их классов. От класса задачи зависит подбор метода (эффективность её решения). Классификацию задач определяют: целевая функция и допустимая область (задаётся системой неравенств и равенств или более сложным алгоритмом).

Методы оптимизации классифицируют в соответствии с задачами оптимизации:

1. Локальные методы:

сходятся к какому-нибудь локальному экстремуму целевой функции. В случае унимодальной целевой функции, этот экстремум единственен, и будет глобальным максимумом / минимумом.

2. Глобальные методы:

имеют дело с многоэкстремальными целевыми функциями. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции.

Существующие в настоящее время методы поиска можно разбить на три большие группы:

1. детерминированные;

2. случайные (стохастические);

3. комбинированные.

По критерию размерности допустимого множества, методы оптимизации делят на методы одномерной оптимизации и методы многомерной оптимизации.

По виду целевой функции и допустимого множества, задачи оптимизации и методы их решения можно разделить на следующие классы:

Задачи оптимизации, в которых целевая функция и ограничения являются линейными функциями , разрешаются так называемыми методами линейного программирования.

В противном случае имеют дело с задачей нелинейного программирования и применяют соответствующие методы. В свою очередь из них выделяют две частные задачи:

если и - выпуклые функции, то такую задачу называют задачей выпуклого программирования;

если, то имеют дело с задачей целочисленного (дискретного) программирования.

По требованиям к гладкости и наличию у целевой функции частных производных, их также можно разделить на:

· прямые методы, требующие только вычислений целевой функции в точках приближений;

· методы первого порядка: требуют вычисления первых частных производных функции;

· методы второго порядка: требуют вычисления вторых частных производных, то есть гессиана целевой функции.

Помимо того, оптимизационные методы делятся на следующие группы:

Аналитические методы (например, метод множителей Лагранжа и условия Каруша-Куна-Таккера);

Численные методы;

Графические методы.

В зависимости от природы множества X задачи математического программирования классифицируются как:

· задачи дискретного программирования (или комбинаторной оптимизации) - если X конечно или счётно;

· задачи целочисленного программирования - если X является подмножеством множества целых чисел;

· задачи нелинейного программирования, если ограничения или целевая функция содержат нелинейные функции и X является подмножеством конечномерного векторного пространства.

Если же все ограничения и целевая функция содержат лишь линейные функции, то это - задача линейного программирования.

Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование.

Математическое программирование используется при решении оптимизационных задач исследования операций.

Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:

1. Определение границ системы оптимизации

Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается

2. Выбор управляемых переменных

«Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)

3. Определение ограничений на управляемые переменные (равенства и / или неравенства).

Выбор числового критерия оптимизации (например, показателя эффективности)

4. Создаём целевую функцию.

Вероятностно-статистические методы

Суть вероятностно-статистических методов принятия решений

Как подходы, идеи и результаты теории вероятностей и математической статистики используются при принятии решений?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду как нежелательные возможности (риски), так и привлекательные («счастливый случай»). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя. Например, по вероятности выпадения герба можно рассчитать вероятность того, что при 10 бросаниях монет выпадет не менее 3 гербов. Подобный расчет опирается на вероятностную модель, согласно которой бросания монет описываются схемой независимых испытаний, кроме того, выпадения герба и решетки равновозможны, а потому вероятность каждого из этих событий равна Ѕ. Более сложной является модель, в которой вместо бросания монеты рассматривается проверка качества единицы продукции. Соответствующая вероятностная модель опирается на предположение о том, что контроль качества различных единиц продукции описывается схемой независимых испытаний. В отличие от модели с бросанием монет необходимо ввести новый параметр - вероятность Р того, что единица продукции является дефектной. Модель будет полностью описана, если принять, что все единицы продукции имеют одинаковую вероятность оказаться дефектными. Если последнее предположение неверно, то число параметров модели возрастает. Например, можно принять, что каждая единица продукции имеет свою вероятность оказаться дефектной.

Обсудим модель контроля качества с общей для всех единиц продукции вероятностью дефектности Р. Чтобы при анализе модели «дойти до числа», необходимо заменить Р на некоторое конкретное значение. Для этого необходимо выйти из рамок вероятностной модели и обратиться к данным, полученным при контроле качества. Математическая статистика решает обратную задачу по отношению к теории вероятностей. Ее цель - на основе результатов наблюдений (измерений, анализов, испытаний, опытов) получить выводы о вероятностях, лежащих в основе вероятностной модели. Например, на основе частоты появления дефектных изделий при контроле можно сделать выводы о вероятности дефектности (см. теорему Бернулли выше). На основе неравенства Чебышева делались выводы о соответствии частоты появления дефектных изделий гипотезе о том, что вероятность дефектности принимает определенное значение.

Таким образом, применение математической статистики опирается на вероятностную модель явления или процесса. Используются два параллельных ряда понятий - относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, «находятся в головах исследователей», относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин «генеральная совокупность» используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют «анализ данных». По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик - вот суть вероятностно-статистических методов принятия решений.

Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий, один из которых соответствует вероятностным моделям, а второй - выборочным данным. К сожалению, в ряде литературных источников, обычно устаревших либо написанных в рецептурном духе, не делается различия между выборочными и теоретическими характеристиками, что приводит читателей к недоумениям и ошибкам при практическом использовании статистических методов.

Применение конкретного вероятностно-статистического метода состоит из трёх этапов:

1. Переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, то есть построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений, в частности по результатам статистического контроля, и тому подобного.

2. Проведение расчётов и получение выводов чисто математическими средствами в рамках вероятностной модели.

3. Толкование математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и подобном).

Математическая статистика применяет понятия, методы и результаты теории вероятностей. Далее рассматриваем основные вопросы построения вероятностных моделей в разнообразных случаях. Подчеркнём, что для активного и правильного использования нормативно-технических и инструктивно-методических документов по вероятностно-статистическим методам нужны предварительные знания. Так, необходимо знать, при каких условиях следует применять тот или иной документ, какие исходные данные нужны для его выбора и применения, какие решения должны быть приняты по результатам обработки данных, и так далее.

Рассмотрим несколько примеров, когда вероятностно-статистические модели являются хорошим средством решения задач.

В романе Алексея Николаевича Толстого «Хождение по мукам» (том 1) говорится: «мастерская даёт двадцать три процента брака, этой цифры вы и держимтесь, - сказал Струков Ивану Ильичу». Как понимать эти слова в разговоре руководителей завода? Eдиница продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Наверноe, Струков мыслил, что в партии большого объёма содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос: а что значит «примерно»? Пусть из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000 - 300, или из 100 000 - 30 000… Надо ли обвинять Струкова во лжи?

Монетка, используемая как жребий, должна быть «симметричной»: в среднем в половине случаев подбрасывания должен выпадать орёл, а в половине случаев - решка. Но что означает «в среднем»? Если провести много серий по 10 бросаний в каждой серии, то часто будут встречаться серии, в которых монетка 4 раза выпадает орлом. Для симметричной монеты это будет происходить в 20,5% серий. А если на 100 000 бросаний окажется 40 000 орлов, то можно ли считать монету симметричной? Процедура принятия решений строится на основе теории вероятностей и математической статистики.

Пример может показаться несерьёзным. Это не так. Жеребьёвка широко используется при организации промышленных технико-экономических экспериментов. Например, при обработке результатов измерения показателя качества (момента трения) подшипников в зависимости от различных технологических факторов (влияния консервационной среды, методов подготовки подшипников перед измерением, влияния нагрузки подшипников в процессе измерения и тому подобных). Допустим, нужно сравнить качество подшипников в зависимости от результатов хранения их в разных консервационных маслах. При планировании такого эксперимента возникает вопрос, какие подшипники следует поместить в масло одного состава, а какие - в другое, но так, чтобы избежать субъективизма и обеспечить объективность принимаемого решения. Ответ может быть получен с помощью жребия.

Аналогичный пример можно привести и с контролем качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, из неё выбирается представительная часть: по этой выборке судят о всей партии. Поэтому желательно, чтобы каждая единица в контролируемой партии имела одинаковую вероятность быть выбранной. В производственных условиях выбор единиц продукции обычно делают не жребием, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

Похожие проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства, оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности. Всюду нужна жеребьёвка или подобные ей меры.

Пусть надо выявить наиболее сильную и вторую по силе команду при организации турнира по олимпийской системе (проигравший выбывает). Допустим, что более сильная команда всегда побеждает более слабую. Ясно, что самая сильная команда однозначно станет чемпионом. Вторая по силе команда выйдет в финал только когда до финала у неё не будет игр с будущим чемпионом. Если такая игра запланирована, то вторая по силе команда в финал не попадёт. Тот, кто планирует турнир, может либо досрочно «выбить» вторую по силе команду из турнира, сведя её в первой же встрече с лидером, либо обеспечить ей второе место, обеспечив встречи с более слабыми командами вплоть до финала. Чтобы избежать субъективизма, проводят жеребьёвку. Для турнира из 8 команд вероятность того, что в финале встретятся две самые сильные команды, равна 4 из 7. Соответственно с вероятностью 3 из 7 вторая по силе команда покинет турнир досрочно.

При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра…) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо многократно измерить единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической погрешности присутствует и случайная погрешность.

Встаёт вопрос, как по измерениям выявить систематическую погрешность. Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то эту задачу можно свести к ужем рассмотренной. Действительно, сопоставим измерение с бросанием монеты: положительную погрешность - с выпадением орла, отрицательную - решки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается). Тогда проверка отсутствия систематической погрешности эквивалентна проверке симметричности монеты.

Итак, задача проверки на систематическую погрешность сведена к задаче проверки симметричности монеты. Проведённые рассуждения приводят к так называемому «критерию знаков» в математической статистике.

При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приёмочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определённому числу, например, .

Теория игр

Теория игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором каждая из сторон-участников (две или более) ведут борьбу за свои интересы. Каждая сторона преследует свои цели и пользуется некоторой стратегией, которая может в свою очередь привести к выигрышу или проигрышу (результат зависит от других игроков. Теория игр предоставляет возможность выбора наилучшей стратегии с учетом представлений о других игроках, их возможностях и возможных поступках.

Теория игр - это раздел прикладной математики, точнее - исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике, юриспруденции и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж. Бертраном. В начале XX в. Э. Ласкер, Э. Цермело, Э. Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение» (англ. Theory of Games and Economic Behavior).

Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница и журналистка Сильвия Назар издала книгу о судьбе Джона Нэша, нобелевского лауреата по экономике и учёного в области теории игр; а в 2001 по мотивам книги был снят фильм «Игры разума». Некоторые американские телевизионные шоу, например, «Friend or Foe», «Alias» или «NUMBЕRS», периодически ссылаются на теорию в своих эпизодах.

Дж. Нэш в 1949 году пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике. Дж. Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Дж. Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу», или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Дж. Нэша сделали серьёзный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Дж. Нэш показывает, что классический подход к конкуренции А. Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других.

Хотя теория игр первоначально и рассматривала экономические модели, вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после неё теорией игр серьёзно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960-1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т. Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии (это психологическая дисциплина) и в управлении конфликтами в организации (теория менеджмента). В психологии и других науках используют слово «игра» в других смыслах, нежели чем в математике. Некоторые психологи и математики скептически относятся к использованию этого термина в других смыслах, сложившихся ранее. Культурологическое понятие игры было дано в работе Йохана Хёйзинга «Homo Ludens» (статьи по истории культуры), автор говорит об использовании игр в правосудии, культуре, этике, о том, что игра старше самого человека, так как животные тоже играют. Понятие игры встречается в концепции Эрика Бёрна «Игры, в которые играют люди, люди, которые играют в игры». Это сугубо психологические игры, основанные на трансакционном анализе. Понятие игры у Й. Хёзинга отличается от интерпретации игры в теории конфликтов и математической теории игр. Игры также используются для обучения в бизнес-кейсах, семинарах Г.П. Щедровицкого, основоположника организационно-деятельностного подхода. Во время Перестройки в СССР Г.П. Щедровицкий провел множество игр с советскими управленцами. По психологическому накалу ОДИ (организационно-деятельностные игры) были так сильны, что служили мощным катализатором изменений в СССР. Сейчас в России сложилось целое движение ОДИ. Критики отмечают искусственную уникальность ОДИ. Основой ОДИ стал Московский методологический кружок (ММК).

Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако математический аппарат теории игр затратен. Его применяют для оправданных задач: политика, экономика монополий и распределения рыночной власти и т.п. Ряд известных ученых стали Нобелевскими лауреатами по экономике за вклад в развитие теории игр, которая описывает социально-экономические процессы. Дж. Нэш, благодаря своим исследованиям в теории игр, стал одним из ведущих специалистов в области ведения «холодной войны», что подтверждает масштабность задач, которыми занимается теория игр.

Нобелевскими лауреатами по экономике за достижения в области теории игр и экономической теории стали: Роберт Ауман, Райнхард Зелтен, Джон Нэш, Джон Харсаньи, Уильям Викри, Джеймс Миррлис, Томас Шеллинг, Джордж Акерлоф, Майкл Спенс, Джозеф Стиглиц, Леонид Гурвиц, Эрик Мэскин, Роджер Майерсон, Ллойд Шепли, Элвин Рот, Жан Тироль.

Представление игр

Игры представляют собой строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей, или платежей, игроков для каждой комбинации стратегий. Большинство кооперативных игр описываются характеристической функцией, в то время как для остальных видов чаще используют нормальную или экстенсивную форму. Характеризующие признаки игры как математической модели ситуации:

1. Наличие нескольких участников;

2. Неопределенность поведения участников, связанная с наличием у каждого из них нескольких вариантов действий;

3. Различие (несовпадение) интересов участников;

4. Взаимосвязанность поведения участников, поскольку результат, получаемый каждым из них, зависит от поведения всех участников;

5. Наличие правил поведения, известных всем участникам.

Экстенсивная форма

Игра «Ультиматум » в экстенсивной форме

Игры в экстенсивной, или расширенной, форме представляются в виде ориентированного дерева, где каждая вершина соответствует ситуации выбора игроком своей стратегии. Каждому игроку сопоставлен целый уровень вершин. Платежи записываются внизу дерева, под каждой листовой вершиной.

На рисунке слева - игра для двух игроков. Игрок 1 ходит первым и выбирает стратегию F или U. Игрок 2 анализирует свою позицию и решает - выбрать стратегию A или R. Скорее всего первый игрок выберет U, а второй - A (для каждого из них это оптимальные стратегии); тогда они получат соответственно 8 и 2 очка.

Экстенсивная форма очень наглядна, с её помощью особенно удобно представлять игры с более чем двумя игроками и игры с последовательными ходами. Если же участники делают одновременные ходы, то соответствующие вершины либо соединяются пунктиром, либо обводятся сплошной линией.

Нормальная форма игры

В нормальной, или стратегической, форме игра описывается платёжной матрицей. Каждая сторона (точнее, измерение) матрицы - это игрок, строки определяют стратегии первого игрока, а столбцы - второго. На пересечении двух стратегий можно увидеть выигрыши, которые получат игроки. В примере справа, если игрок 1 выбирает первую стратегию, а второй игрок - вторую стратегию, то на пересечении мы видим (?1, ?1), это значит, что в результате хода оба игрока потеряли по одному очку.

Игроки выбирали стратегии с максимальным для себя результатом, но проиграли, из-за незнания хода другого игрока. Обычно в нормальной форме представляются игры, в которых ходы делаются одновременно, или хотя бы полагается, что все игроки не знают о том, что делают другие участники. Такие игры с неполной информацией будут рассмотрены ниже.

Характеристическая функция

В кооперативных играх с трансферабельной полезностью, то есть возможностью передачи средств от одного игрока к другому, невозможно применять понятие индивидуальных платежей. Вместо этого используют так называемую характеристическую функцию, определяющую выигрыш каждой коалиции игроков. При этом предполагается, что выигрыш пустой коалиции равен нулю.

Основания такого подхода можно найти ещё в книге фон Неймана и Моргенштерна. Изучая нормальную форму для коалиционных игр, они рассудили, что если в игре с двумя сторонами образуется коалиция C, то против неё выступает коалиция N\C. Образуется как бы игра для двух игроков. Но так как вариантов возможных коалиций много (а именно 2N, где N - количество игроков), то выигрыш для C будет некоторой характеристической величиной, зависящей от состава коалиции. Формально игра в такой форме (также называемая TU-игрой) представляется парой (N, v), где N - множество всех игроков, а v: 2N > R - это характеристическая функция.

Подобная форма представления может быть применена для всех игр, в том числе без трансферабельной полезности. В настоящее время существуют способы перевести любую игру из нормальной формы в характеристическую, но преобразование в обратную сторону возможно не во всех случаях.

Применение теории игр

Теория игр, как один из подходов в прикладной математике, применяется для изучения поведения человека и животных в различных ситуациях. Первоначально теория игр начала развиваться в рамках экономической науки, позволив понять и объяснить поведение экономических агентов в различных ситуациях. Позднее область применения теории игр была расширена на другие социальные науки; в настоящее время теория игр используется для объяснения поведения людей в политологии, социологии и психологии. Теоретико-игровой анализ был впервые использован для описания поведения животных Рональдом Фишером в 30-х годах XX века (хотя даже Чарльз Дарвин использовал идеи теории игр без формального обоснования). В работе Рональда Фишера не появляется термин «теория игр». Тем не менее, работа по существу выполнена в русле теоретико-игрового анализа. Разработки, сделанные в экономике, были применены Джоном Майнардом Смитом в книге «Эволюция и теория игр». Теория игр используется не только для предсказания и объяснения поведения; были предприняты попытки использовать теорию игр для разработки теорий этичного или эталонного поведения. Экономисты и философы применяли теорию игр для лучшего понимания хорошего (достойного) поведения. Вообще говоря, первые теоретико-игровые аргументы, объясняющие правильное поведения, высказывались ещё Платоном.

Описание и моделирование

Первоначально теория игр использовалась для описания и моделирования поведения человеческих популяций. Некоторые исследователи считают, что с помощью определения равновесия в соответствующих играх они могут предсказать поведение человеческих популяций в ситуации реальной конфронтации. Такой подход к теории игр в последнее время подвергается критике по нескольким причинам. Во-первых, предположения, используемые при моделировании, зачастую нарушаются в реальной жизни. Исследователи могут предполагать, что игроки выбирают поведения, максимизирующее их суммарную выгоду (модель экономического человека), однако на практике человеческое поведение часто не соответствует этой предпосылке. Существует множество объяснений этого феномена - нерациональность, моделирование обсуждения, и даже различные мотивы игроков (включая альтруизм). Авторы теоретико-игровых моделей возражают на это, говоря, что их предположения аналогичны подобным предположениям в физике. Поэтому даже если их предположения не всегда выполняются, теория игр может использовать как разумная идеальная модель, по аналогии с такими же моделями в физике. Однако, на теорию игр обрушился новый вал критики, когда в результате экспериментов было выявлено, что люди не следуют равновесным стратегиям на практике. Например, в играх «Сороконожка», «Диктатор» участники часто не используют профиль стратегий, составляющий равновесие по Нэшу. Продолжаются споры о значении подобных экспериментов. Согласно другой точке зрения, равновесие по Нэшу не является предсказанием ожидаемого поведения, оно лишь объясняет, почему популяции, уже находящиеся в равновесии по Нэшу, остаются в этом состоянии. Однако вопрос о том, как эти популяции приходят к равновесию Нэша, остается открытым. Некоторые исследователи в поисках ответа на этот вопрос переключились на изучение эволюционной теории игр. Модели эволюционной теории игр предполагают ограниченную рациональность или нерациональность игроков. Несмотря на название, эволюционная теория игр занимается не только и не столько вопросами естественного отбора биологических видов. Этот раздел теории игр изучает модели биологической и культурной эволюции, а также модели процесса обучения.

Нормативный анализ (выявление наилучшего поведения)

С другой стороны, многие исследователи рассматривают теорию игр не как инструмент предсказания поведения, но как инструмент анализа ситуаций с целью выявления наилучшего поведения для рационального игрока. Поскольку равновесие Нэша включает стратегии, являющиеся наилучшим откликом на поведение другого игрока, использование концепции равновесия Нэша для выбора поведения выглядит вполне обоснованным. Однако, и такое использование теоретико-игровых моделей подверглось критике. Во-первых, в некоторых случаях игроку выгодно выбрать стратегию, не входящую в равновесие, если он ожидает, что другие игроки также не будут следовать равновесным стратегиям. Во-вторых, знаменитая игра «Дилемма заключенного» позволяет привести ещё один контрпример. В «Дилемме заключенного» следование личным интересам приводит к тому, что оба игрока оказываются в худшей ситуации в сравнении с той, в которой они пожертвовали бы личными интересами.

Кооперативные и некооперативные

Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом. Попытки объединить два подхода дали немалые результаты. Так называемая программа Нэша уже нашла решения некоторых кооперативных игр как ситуации равновесия некооперативных игр.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Симметричные и несимметричные

Несимметричная игра

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя», «Ястребы и голуби». В качестве несимметричных игр можно привести «Ультиматум» или «Диктатор».

В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой

Игры с нулевой суммой - особая разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство.

Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока, который «присваивает себе» излишек или восполняет недостаток средств.

Ещё игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. Широко известным примером, где она уменьшается, является война.

Параллельные и последовательные

В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые - в экстенсивной.

С полной или неполной информацией

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. Например, вся «соль» «Дилеммы заключённого» или «Сравнения монеток» заключается в их неполноте.

В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка». Сюда же относятся шахматы, шашки, го, манкала и другие.

Часто понятие полной информации путают с похожим - совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным числом шагов

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии. Используя аксиому выбора, можно доказать, что иногда даже для игр с полной информацией и двумя исходами - «выиграл» или «проиграл» - ни один из игроков не имеет такой стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств.

Дискретные и непрерывные игры

Большинство изучаемых игр дискретны: в них конечное число игроков, ходов, событий, исходов и т.п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.

Метаигры

Это игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом). Цель метаигр - увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов.

Методы построения и анализа имитационных моделей (имитационное моделирование).

Имитационное моделирование (ситуационное моделирование) - метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация - это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование - это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов.

Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Применение имитационного моделирования.

К имитационному моделированию прибегают, когда:

· дорого или невозможно экспериментировать на реальном объекте;

· невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;

· необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора (англ. simulation modeling) исследуемой предметной области для проведения различных экспериментов.

Виды имитационного моделирования

Три подхода имитационного моделирования

Подходы имитационного моделирования на шкале абстракции

· Агентное моделирование - относительно новое (1990-2000 гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей - получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент - некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

· Дискретно-событийное моделирование - подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие, как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.

Подобные документы

    Принятие решений в условиях неопределенности. Критерий Лапласа и принцип недостаточного основания. Критерий крайнего пессимизма. Требования критерия Гурвица. Нахождение минимального риска по Сэвиджу. Выбор оптимальной стратегии при принятии решения.

    контрольная работа , добавлен 01.02.2012

    Теория статистических решений как поиск оптимального недетерминированного поведения в условиях неопределенности. Критерии принятия решений Лапласа, минимаксный, Сэвиджа, Гурвица и различия между ними. Математические средства описания неопределенностей.

    контрольная работа , добавлен 25.03.2009

    Применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности. Описание метода Минти. Выбор среды разработки. Система программирования Delphi. Параметры программного продукта.

    курсовая работа , добавлен 31.05.2012

    Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.

    курсовая работа , добавлен 07.05.2013

    Построение экономических и математических моделей принятия решений в условиях неопределенности. Общая методология оптимизационных задач, оценка преимуществ выбранного варианта. Двойственность и симплексный метод решения задач линейного программирования.

    курс лекций , добавлен 17.11.2011

    Потребность в прогнозировании в современном бизнесе, выявление объективных альтернатив исследуемых экономических процессов и тенденций. Группа статистических методов прогностики, проверка адекватности и точности математических моделей прогнозирования.

    курсовая работа , добавлен 13.09.2015

    Разработка и принятие правильного решения как задачи работы управленческого персонала организации. Деревья решений - один из методов автоматического анализа данных, преимущества их использования и область применения. Построение деревьев классификации.

    контрольная работа , добавлен 08.09.2011

    Оптимизация решений динамическими методами. Расчет оптимальных сроков начала строительства объектов. Принятие решений в условиях риска (определение математического ожидания) и неопределенности (оптимальная стратегия поведения завода, правило максимакса).

    контрольная работа , добавлен 04.10.2010

    Количественное обоснование управленческих решений по улучшению состояния экономических процессов методом математических моделей. Анализ оптимального решения задачи линейного программирования на чувствительность. Понятие многопараметрической оптимизации.

    курсовая работа , добавлен 20.04.2015

    Изучение на практике современных методов управления и организации производства, совершенствование применения этих методов. Описание ориентированной сети, рассчет показателей сети для принятия управленческих решений. Проблема выбора и оценка поставщика.

Математические методы и модели в принятии решений

Введение!

Цель моделирования - процесс исследования объекта на разных уровнях - от качественного до точного количественного, по мере осуществления сбора информации и развития модели.

В математической области методы и модели понимаются как комплексные категории, которые в себя включают:

    методы в принятии решений;

    методы исследования операций;

    экономико-математический методы;

    методы экономической кибернетики;

    методы оптимального управления;

    прикладную математику в экономике;

    прикладную математику в организации производства.

Этот список не является полным, что свидетельствует о широком диапазоне математических методов и моделей. В различных источниках, содержание которых касается представленной тематики, математические модели и методы рассматриваются в тех или иных сочетаниях.

Практическое доказательство обозначенной мысли возможно на примере известного метода «теории вероятностей», который представлен в рамках математических моделей широким классом и включает в себя такие понятия, как «вероятность», «случайное событие», «случайная величина», «математическое ожидание (среднее значение) случайной величины», «дисперсия (рассеяние)» и т.п. В конце XIX - начале XX вв. выделяется новый объект, который представляет собой коммутированную систему телефоной связи, подразумевающую такие понятия, как «заявка на соединение», «отказ», «время ожидания соединения», «коммутация» и тому подобные элеметы.

Математическая теоретико-вероятностная модель процессов в коммутированных телефонных сетях была образована в 20-х гг. в результате соединения представленного метода и объекта. Автором подобной операции стал А.К. Эрланг. В качестве примера существующих понятий данной модели можно отметить:

    «поток заявок»;

    «среднее время ожидания»;

    «средняя длина очереди на обслуживание»;

    «дисперсию времени ожидания»;

    «вероятность отказа».

Последующее развитие этого научного направления продемонстрировало результативность понятийных категорий симбиозной модели, выявило ее масштабную конструктивную функцию.

Данная модель в процессе своего развития трансформировалась в метод исследования сложных систем. В качестве примера можно выделить «теорию массового обслуживания», категориальный аппарат которой перестал восприниматься как неотъемлемая составляющая телефонных сетей. Терминология и понятийная база приобрели общетеоретический характер. Так, организация новых моделей может осуществляться посредством применения теории массового обслуживания к таким объектам, как производственные процессы, операционные системы, ЭВМ, транспортные потоки и т.п.

В результате очевидным представляется вывод, что метод является в полной мере сформированным в случае развития однородной совокупности моделей. Степень исследования объекта же напрямую зависит от количества разработанных моделей объекта. Двойственная сущность модели формирует, в свою очередь, дуализм категориального аппарата моделирования, который интегрирует в себя понятия общие или специфичные, образованные от «метода» и «объекта», соответственно.

Иными словами, методы, модели, объекты организуют непрерывную последовательность, которая подразумевает наличие различных групп моделей, образующихся в соответствии со спецификой своего происхождения и применяемости. Среди таких групп можно выделить:

    модели, которые предполагают взаимодействие раннее разработанных методов и новых объектов;

    модели, впервые созданные с целью осуществления описания конкретного объекта, при этом новые модели могут быть применимы и по отношению к другим объектам.

Линейное программирование - математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах n -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Целочисленное программирование - разновидность линейного программирования, подразумевающая, что искомые значения должны быть целыми числами.

Раздел математического программирования, в котором изучаются методы нахождения экстремумов функций в пространстве параметров, где все или некоторые переменные являются целыми числами.

Простейший метод решения задачи целочисленного программирования - сведение ее к задаче линейного программирования с проверкой результата на целочисленность.

Потоки в сетях

Деятельность современного общества тесно связана с разного рода сетями - возьмите, к примеру, транспорт, коммуникации, распределение товаров и тому подобное. Поэтому математический анализ таких сетей стал предметом фундаментальной важности.

ГЕОМЕТРИЧЕСКОЕ ПРОГРАММИРОВАНИЕ - раздел , изучает определенный класс оптимизационных задач , встречающихся главным образом в инженерно-экономических расчетах. Основное требование метода состоит в том, чтобы все технические характеристики проектируемых объектов были выражены количественно в виде зависимостей от регулируемых параметров . Геометрическим такой вид программирования назван потому, что в нем эффективно используется геометрическое среднее и ряд таких геометрических понятий, как векторные пространства , векторы , ортогональность и др.

НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ - раздел математического программирования , изучающий методы решения экстремальных задач с нелинейной целевой функцией и (или) областью допустимых решений , определенной нелинейными ограничениями .

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ - 1. Основное понятие математической теории оптимальных процессов (принадлежащей разделу математики под тем же названием - О. у.); означает выбор таких управляющих параметров , которые обеспечивали бы наилучшее с точки зрения заданного критерия протекание процесса или, иначе, наилучшее поведение системы , ее развитие к цели по оптимальной траектории . Эти управляющие параметры обычно рассматриваются как функции времени , что означает возможность их изменения по ходу процесса для выбора на каждом этапе их наилучших (оптимальных) значений.

ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ - раздел исследования операций , который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других областях, как процессы обслуживания, т. е. удовлетворения каких-то запросов, заказов (напр., обслуживание кораблей в порту - их разгрузка и погрузка, обслуживание токарей в инструментальной кладовой цеха - выдача им резцов, обслуживание клиентов в прачечной - стирка белья и т. д.).

ТЕОРИЯ ПОЛЕЗНОСТИ - теоретическое направление в экономической науке, развитое представителями австрийской школы в XIX-XX вв., основанное на базисном объективном понятии "полезность", воспринимаемом как удовольствие, удовлетворение, получаемое человеком в результате потребления благ. Основной принцип теории полезности - закон убывающей предельной полезности , согласно которому приращение полезности, получаемое от одной добавленной единицы блага, непрерывно убывает.

Теория принятия решений - междисциплинарная область исследования, представляющая интерес для практиков и связанная с математикой, статистикой, экономикой, философией, менеджментом и психологией; изучает, как реальные лица, принимающие решение, выбирают решения и насколько оптимальные решения могут быть приняты.

Теория игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Имитационное моделирование - метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Динамическое программирование – это раздел математики, посвящённый теории и методам решения многошаговых задач оптимального управления.

Специалисты по информационным системам считают, что состояние любого объекта управления можно охарактеризовать некоторой неопределенностью, или энтропией (H0 = -logPo), выступающей в роли информационного потенциала, обусловливающего переход системы в другое состояние, т. е. наступление какого-либо события, вероятность которого равна P0 .
В практической деятельности целью всякого управляющего является изменение состояния системы, т. е. оказания воздействия, приведшего ее к новому устойчивому состоянию (событию) Руст, которому будет соответствовать другое значение информационного потенциала (Нуст = -logH^), где Руст - вероятность события от приложенного управляющим воздействия на систему.
Тогда мы можем утверждать, что сущность управления, осуществляемого источником информации (руководителем), можно охарактеризовать некоторым информационным напряжением
(4.11)
P ст
DHопт. _ H0 Hуст.
= = DJ упр 5
P
т. е. DHопт »DJупр.
Таким образом, руководители, занимающиеся производственной деятельностью, являются источником управляющей информации. Это следует понимать таким образом. Руководитель человеко-машинного комплекса или ОТС должен обладать таким потенциалом (источником информационного напряжения), которое равно логарифму отношения вероятности правильно принятого решения (Р0), приводящего к вероятности перехода системы в устойчивое состояние Руст, функционирование которого будет осуществляться без дополнительного воздействия на объект управления. Или, другой пример, пусть проректор по информации является источником управляющей информации для всех вычислительных подразделений, имея информационное напряжение, равное вероятности выполнения плана информатизации УлГТУ без дополнительных средств.
Из вышеприведенного следует, что информационное напряжение, т. е. суть источника АН, может быть как положительным, так и отрицательным. Если Руст = Р0, то напряжение источника равно нулю (АН = 0), и тогда роль руководителя в управлении несущественна, бессмысленна, т. е. он не управляет процессом.
Важно теперь то, что мы можем перейти от содержательного описания процесса управления к математическому, но для этого необходимо выбрать единицу измерения информационного потенциала, отождествляя формальное описание энтропии с информационной энтропией и в зависимости от выбора основания логарифма в (4.11) мы приходим к понятию «информационная энтропия», которую будем измерять в битах.
Многие авторы информационную энтропию отождествляют с термодинамической, что на самом деле соответствует физической реальности. В нашем случае пользоваться для измерения информационного напряжения битами можно только при условии, если использовать двоичные логарифмы, как предлагается в работе . Однако не следует информационное напряжение путать с информацией, которая тоже измеряется в битах, это существенно важно.
Для убедительности сказанного рассмотрим пример. Подсчитаем информационное напряжение, которым обладает система охраны компьютерной техники в лабораториях ИЦ МФ. Пусть важнейшим объектом является информационный сервер МФ, на котором хранится вся информация, и при его разрушении или ликвидации нарушается весь учебный процесс факультета. Предположим, что операцию ликвидации сервера проводят два человека, один из которых при срабатывании сигнализации успел сбежать. В этом случае, не имея возможности задержать обоих похитителей, охранники, не владеющие оперативной связью между собой, захватят одного из похитителей с вероятностью
равной 0,5 (Р0 = 0,5). Если же действия охраны согласованы между собой, то они нейтрализуют этого субъекта с возможной вероятностью, равной 1. Тогда имеем, что АН = log2 = 1 бит. Согласно определению логарифма, получим показательное уравнение вида 2х = 1, принимая х = 0, напряжение источника информации (охраны) составит 1 бит.
Следует указать, что согласно рассмотренному примеру, источник с напряжением 1 бит способен передать сколь угодно большое количество информации объекту управления в зависимости от времени, которым он будет располагать. Также важно отметить, что информационное напряжение источника может изменять во времени свое значение, т. е. знак, если важность достижения цели неодинакова в различные моменты времени. Используя математические выражения, описывающие работу автоматических систем управления , для определения переменного информационного напряжения можно воспользоваться формулой
2
ґр Л
уст
V P0)
1 t
IJ
T
dt = o(AH),
log
(4.12)
AH д =
1 ¦ J dt =
которая выражает среднеквадратическое напряжение o(AH). Для случайных изменений сути сигнала х можно воспользоваться выражением
? ? AH0 = Jf (x)AH ¦ dx; A^ = Jf (x)AH2 ¦ dx,
-оо
-оо
где АН0 и АНД - средние и действующие значения сущности сигнала; f(x) - плотность распределения вероятности Р события.
Если AH = A sin
v T)
, то согласно (4.12) действующее значение переменно-
A
го информационного напряжения составляет AH д = -=, что в 1,5 раза меньше
V2
максимального мгновенного значения напряжения.
Эта информация, выданная источником управления, т. е. управляющим, поступает к исполнительным органам («активным элементам») информационной нагрузкой источника, а затем по цепи обратной связи возвращается снова в источник. Обратную связь обеспечивают те же элементы, что и прямую.
Если исполнительные органы являются пассивными и не обладают памятью, они характеризуются только информационным сопротивлением (IR). Следует отметить, что IR - это время (t), т. е. время исполнения управляющего ука-зания.
Более точно IR системы равно времени (tR) исполнения задания от момента получения указания до поступления доклада о его выполнении. При этом время
(tR) для принятия самого решения, т. е. осмысления формулировки, является
внутренним информационным сопротивлением (R В нр) источника информации
(управляющего), которое является обратным пропускной способности системы (Imax) источника информации. И, следовательно, для систем без памяти имеет место информационный закон, аналогичный закону Ома для электрической цепи
ii = (4.13)
FH
где FH = Fn - Бвт - информационное сопротивление нагрузки; Бп и F^ - информационное сопротивление соответственно всей цепи и внутреннее сопротивление источника; I - информационный поток (ток) в цепи нагрузки.
При однократном достижении цели сквозь систему управления проходит информация (1ц), численно равная напряжению источника информации
I, = IFh = DH = DI упР. (4.14)
При длительной работе в течение времени (t) через данную цепь протекает информация
t t DH
1 УПР = J Idt = J-dt. (415)
0 0 Гн
Важно понимать, что эффективность управления зависит не от количества информации и даже не от качества, а насколько она способствует достижению цели, т. е. от ее ценности. Таким образом, ценность информации в первую очередь необходимо связывать с целью, с точностью формулировки задачи. Под качеством информации мы будем понимать степень ее искажения, которая зависит от элементов информационной цепи.
Таким образом, мы можем иметь большой поток информации, но если она не способствует достижению цели и не является точной, например, из-за искажения, поэтому и не будет иметь ценности.
На основании данной методики расчета количества информации, циркулирующей в информационной цепи, появляется также возможность выполнения оценок качества принимаемых решений, что позволяет использовать классические математические процедуры оценивания для решения задач оптимизации.
Подобные задачи рассматриваются в работе .
Известно, что любая задача становится более конкретной, когда она выражена в математической форме. Чтобы поставить математическую задачу, отражающую сущность производства информационных работ, следует к необходимым условиям, изложенным выше, прибавить достаточные, а именно:
уметь пользоваться методикой информационной оценки в сложившейся ситуации;
иметь управляющего, способного нейтрализовать дестабилизирующие факторы, влияющие на данную вероятностную систему.
В работе показано, как вероятностные динамические задачи представляются в виде детерминированных, в рамках которой исследуемые объекты описываются функциями многих переменных, а варьируемые параметры являться их аргументами. Таким образом, принимая ИЦ за вероятностную динамическую систему, его модель можно представить в виде функций многих переменных х = х(х1, ..., хт), где х = f(I); I - информация.
В задачах, не требующих точного решения, можно воспользоваться приближенной оценкой состояния объекта, принимая при этом во внимание только наиболее важный выходной показатель, например, пропускную способность f(x), т. е. эффективность. Тогда, обозначая остальные параметры через функцию ф8(х), s = 1, 2, ..., m, мы приходим к задаче оптимального выбора вектора параметров х. Эта задача представляет собой вычислительный алгоритм, записываемый в виде процедуры оценивания и оптимизации:
max f (x),
(4.16)
>
xeS
S{x: x є X с Rn, js(x) Нам требуется максимизировать показатель качества f(x) на множестве S, заданной системой ограничений, которые сформулированы выше. Здесь элемент х принадлежит множеству S, если хєХ, где Х - некоторое подмножество n-мерного пространства Rn, при выполнении неравенства ф3(х) Обычно множество Х определяет ограничения на допустимые значения варьируемых параметров х типа условий неотрицательности xj>0 или принадлежности интервалу xj А неравенства ф3(х) Существенно важно, что с математической точки зрения сформулированную задачу можно также трактовать как процесс планирования в условиях неопределенности для динамической системы. Тогда она сводится к решению вероятностной задачи линейного программирования, которая с учетом (4.16) записывается в более удобной форме:
max MюCj(w)y L
w
(4.17)
j=1
S^x: xє X,P\ ?asj(w)xj Ls,S = 1,2,...,m.
sJw j s J=!
где Mw - операция усреднения случайной величины w, а Y есть функция f(xj), характеризующая важнейший показатель анализируемой системы, например, пропускную способность комплекса или его эффективность. Оператор усреднения в общем виде записывается в виде
Mw{y(x,w)}=Y(x),
который определяет функцию Y(x) как математическое ожидание случайного вектора y(x,w). Функция Y(x), заданная случайными величинами js(x,w), является вероятностной.
В формулах (4.16) и (4.17) функции f(x) и ф3(х) были заданы алгоритмически, а не аналитически, поэтому мы оперируем случайными величинами, которые математически обозначаются в виде f(x, w) и js(x, w), так что в более строгой форме имеем
f(y)= Mw{f(y,w)},
js(x)= Mw{js(x,w)}. (4.18)
Следует указать, что Y - детерминированная величина, а q(w) является коэффициентом целевой функции.
Условия аВсе случайные параметры, входящие в (4.17), позволяют учесть колебания (отклонения) затрат (z) на выпуск продукции (y) c учетом несвоевременной поставки комплектующих изделий, ЗИПа, программно-технического обеспечения и прочих случайных факторов, в условиях которых функционирует система (вычислительный комплекс).
Чтобы удовлетворить условия задач (4.16) и (4.17), необходимо подобрать
n
вектор х так, чтобы случайное неравенство вида 2 asj(w) ? bs(w) выполнялось
j=1
с вероятностью, равной Ls, и тогда задачу (4.17) можно представить в более простом виде
f(y, w) = 2 Cj(w)y,
j=1
(4.19)
js (x, w) = Ls - 1
j=1
где Ls(w) характеризует совокупность случайных факторов, например, зависящих от поставщиков и потребителей.
Таким образом, рассматриваемая задача относится к разряду вероятностных, потому что условия, в которых существует и функционирует комплекс,
являются неопределенными и зависимыми от многих непредвиденных обстоятельств, не известных непосредственному руководству.
Сформулированная и поставленная задача позволяет связать все важнейшие параметры в систему и учесть случайные факторы, которые в реальной практике существуют всегда.
Данная постановка задачи позволяет отвлечься от содержательной формулировки и перейти к построению математической модели управления, используя теорию автоматического регулирования .
Чтобы практически решить эту задачу управления с заданным качеством выпускаемой продукции, в нее необходимо ввести процедуры принятия оперативного решения, которые должны быть легко адаптированы в целевую функцию. При этом параметры x;=f(I), т. е. выполнение плана x;, можно заменить на количество переработанной информации (I), используя информационные цепи.
Так как решение общей математической задачи управления в рамках данной работы не представляется возможным из-за ее сложности, поэтому мы ее будем представлять в виде отдельных простейших подзадач.
Такая процедура упрощения сложной задачи на практике достигается за счет предварительного согласования отдельных подзадач с непосредственными лицами высшего звена управления, в компетенцию которых относится их решение. Тем самым мы приводим многофакторную задачу к одношаговой, детерминированной. Но, с другой стороны, т. к. в одношаговых задачах принятия решения определяется не величина и характер управляющего воздействия (Н), а непосредственное значение переменной состояния 0 объекта, которое обеспечивает достижение стоящей перед ИК цели, поэтому управляющего высшего уровня не интересует, каким способом будет решена данная задача. Ему важен конечный результат. Следовательно, для конкретного руководителя нижнего уровня задача принятия решения будет считаться заданной, если в нее включены все необходимые параметры, дающие возможность произвести оценку состояния объекта на данный момент времени (t). Тогда в данном конкретном случае задача принятия решения для него будет считаться детерминированной при условии, если определены пространство состояния природы 0 с распределением вероятностей ^(u) для всех ue 0, пространство решений х и критерий качества принятого решения. Взаимосвязь между этими параметрами будем называть целевой функцией (Fq).
Целевую функцию F4, выражающую в явном виде цель, можно рассматривать как одну из важнейших выходных величин объекта управления и обозначим ее через (g). Тогда целевая функция является скалярной величиной, зависящей от состояния природы u и от состояния объекта управления 0. В этом случае сформулированную задачу в математической форме можно представить в виде
g = 0(x, u).
Это и есть математическая модель одношаговой детерминированной задачи принятия решения. Она представляет собой тройку взаимосвязанных параметров, которые можно записать в виде следующей зависимости:
G=(x, 0, q), (4.20)
где q - скалярная функция, определяемая на прямом произведении множеств (ХХ0), тогда G=f(g).
*
Решение этой задачи состоит в нахождении такого х є Х, которое обращает в максимум функцию g, т. е. удовлетворяет условию
X = {x є X: Q(x,u) = max}. (4.21)
Здесь Х=х1, х2, ..., хт - перечень плановых мероприятий ИЦ, при m?N, где N - переменные величины - число плановых мероприятий(задач). Существует несколько методов решения одношаговой задачи.
Представляя переменную Х как количество переработанной информации I в процессе производства вычислительных работ, мы можем записать, что х=Щ), и воспользоваться информационным способом оценки принятия решения. Поэтому при необходимости имеем право произвести оценку деятельности информационного центра в битах.
Опираясь на системные принципы, мы пытались формализовать рутинную работу руководителя информационного подразделения и перевести на научную основу, представив ее в виде задачи управления, с целью повышения оперативности принятия решения в неопределенных условиях.

Современная теория измерений и экспертные оценки. Какпроводить анализ собранных рабочей группой ответов экспертов? Для более углубленного рассмотрения проблем экспертных оценок понадобятся некоторые понятия так называемой репрезентативной теории измерений (глава 2.1), служащей основой теории экспертных оценок, прежде всего той ее части, которая связана с анализом заключений экспертов, выраженных в качественном (а не в количественном) виде.

Репрезентативная (т.е. связанная с представлением отношений между реальными объектами в виде отношений между числами) теория измерений (в дальнейшем сокращенно РТИ) является одной из составных частей эконометрики . А именно, она входит в состав статистики объектов нечисловой природы . Нас РТИ интересует прежде всего в связи с развитием теории и практики экспертного оценивания, в частности, в связи с агрегированием мнений экспертов, построением обобщенных показателей (их называют также рейтингами).

Получаемые от экспертов мнения часто выражены в порядковой шкале , т.е. эксперт может сказать (и обосновать), что один тип продукции будет более привлекателен для потребителей. Чем другой, одинпоказатель качества продукции более важен, чем другой, первый технологический объект более опасен, чем второй, и т.д. Но он не в состоянии сказать, во сколько раз или на сколько более важен, соответственно, более опасен. Поэтому экспертов часто просят дать ранжировку (упорядочение) объектов экспертизы, т.е. расположить их в порядке возрастания (или, точнее, неубывания) интенсивности интересующей организаторов экспертизы характеристики.

Ранг - это номер (объекта экспертизы) в упорядоченном ряду. Формально ранги выражаются числами 1, 2, 3, ..., но весьма важно то, что с этими числами нельзя делать привычные арифметические операции. Например, хотя 2 + 3 = 5, но нельзя утверждать, что для объекта, стоящем на третьем месте в упорядочении (в другой терминологии - ранжировке), интенсивность изучаемой характеристики равна сумме интенсивностей объектов с рангами 1 и 2. Так, один из видов экспертного оценивания - оценки учащихся. Вряд ли кто-либо будет всерьез утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), хорошист соответствует двум двоечникам (2 + 2 = 4), а между отличником и троечником такая же разница, как между хорошистом и двоечником (5 - 3 = 4 - 2). Поэтому очевидно, что для анализа подобного рода качественных данных необходима не обычная арифметика, а другая теория, дающая базу для разработки, изучения и применения конкретных методов расчета. Эта другая теория и есть РТИ. Основы РТИ рассмотрены в главе 2.1.

Рассмотрим в качестве примера применения результатов теории измерений, связанных со средними величинами в порядковой шкале, один сюжет, связанный с ранжировками и рейтингами.

Методы средних баллов. В настоящее время распространены экспертные, маркетинговые, квалиметрические, социологические и иные опросы, в которых опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п. Затем рассчитывают средние баллы и рассматривают их как интегральные (т.е. обобщенные, итоговые) оценки, выставленные коллективом опрошенных экспертов. Какими формулами пользоваться для вычисления средних величин? Ведь средних величин существует, как мы знаем, очень много разных видов.

Обычно применяют среднее арифметическое . Специалисты по теории измерений уже около 30 лет знают, что такой способ некорректен , поскольку баллы обычно измерены в порядковой шкале (см. выше). Обоснованным является использование медиан в качестве средних баллов. Однако полностью игнорировать средние арифметические нецелесообразно из-за их привычности и распространенности . Поэтому представляется рациональным использовать одновременно оба метода - и метод средних арифметических рангов (баллов), и методов медианных рангов. Такая рекомендация находится в согласии с общенаучной концепцией устойчивости , рекомендующей применять различные методы для обработки одних и тех же данных с целью выделить выводы, получаемые одновременно при всех методах. Такие выводы, видимо, соответствуют реальной действительности, в то время как заключения, меняющиеся от метода к методу, зависят от субъективизма исследователя, выбирающего метод обработки исходных экспертных оценок.

Пример сравнения восьми проектов. Рассмотрим конкретный пример применения только что сформулированного подхода.

По заданию руководства фирмы анализировались восемь проектов, предлагаемых для включения в план стратегического развития фирмы. Они обозначены следующим образом: Д, Л, М-К, Б, Г-Б, Сол, Стеф, К (по фамилиям менеджеров, предложивших их для рассмотрения). Все проекты были направлены 12 экспертам, включенным в экспертную комиссию, организованную по решению Правления фирмы. В приведенной ниже табл.1 приведены ранги восьми проектов, присвоенные им каждым из 12 экспертов в соответствии с представлением экспертов о целесообразности включения проекта в стратегический план фирмы. При этом эксперт присваивает ранг 1 самому лучшему проекту, который обязательно надо реализовать. Ранг 2 получает от эксперта второй по привлекательности проект, ... , наконец, ранг 8 - наиболее сомнительный проект, который реализовывать стоит лишь в последнюю очередь.

Таблица 1.

Ранги 8 проектов по степени привлекательности

для включения в план стратегического развития фирмы

№ эксперта

Примечание. Эксперт № 4 считает, что проекты М-К и Б равноценны, но уступают лишь одному проекту - проекту Сол. Поэтому проекты М-К и Б должны были бы стоять на втором и третьем местах и получить баллы 2 и 3. Поскольку они равноценны, то получают средний балл (2+3)/ 2 = 5/ 2 = 2,5.

Анализируя результаты работы экспертов (т.е. упомянутую таблицу), члены аналитической подразделения Рабочей группы, анализировавшие ответы экспертов по заданию Правления фирмы, были вынуждены констатировать, что полного согласия между экспертами нет, а потому данные, приведенные в таблице, следует подвергнуть более тщательному математическому анализу.

Метод средних арифметических рангов. Сначала для получения группового мнения экспертов был применен метод средних арифметических рангов. Для этого прежде всего была подсчитана сумма рангов, присвоенных проектам (см. табл. 1). Затем эта сумма была разделена на число экспертов, в результате рассчитан средний арифметический ранг (именно эта операция дала название методу). По средним рангам строится итоговая ранжировка (в другой терминологии - упорядочение), исходя из принципа - чем меньше средний ранг, чем лучше проект. Наименьший средний ранг, равный 2,625, у проекта Б, - следовательно, в итоговой ранжировке он получает ранг 1. Следующая по величине сумма, равная 3,125, у проекта М-К, - и он получает итоговый ранг 2. Проекты Л и Сол имеют одинаковые суммы (равные 3,25), значит, с точки зрения экспертов они равноценны (при рассматриваемом способе сведения вместе мнений экспертов), а потому они должны бы стоять на 3 и 4 местах и получают средний балл (3+4) /2 = 3,5. Дальнейшие результаты приведены в табл. 2 ниже.

Итак, ранжировка по суммам рангов (или, что то же самое, по средним арифметическим рангам) имеет вид:

Б < М-К < {Л, Сол} < Д < Стеф < Г-Б < К. (1)

Здесь запись типа "А<Б" означает, что проект А предшествует проекту Б (т.е. проект А лучше проекта Б). Поскольку проекты Л и Сол получили одинаковую сумму баллов, то по рассматриваемому методу они эквивалентны, а потому объединены в группу (в фигурных скобках). В терминологии математической статистики ранжировка (1) имеет одну связь.

Метод медиан рангов. Значит, наука сказала свое слово, итог расчетов - ранжировка (1), и на ее основе предстоит принимать решение? Так был поставлен вопрос при обсуждении полученных результатов на заседании Правления фирмы. Но тут наиболее знакомый с современной эконометрикой член Правления вспомнил то, о чем шла речь выше. Он вспомнил, что ответы экспертов измерены в порядковой шкале, а потому для них неправомерно проводить усреднение методом средних арифметических. Надо использовать метод медиан.

Что это значит? Надо взять ответы экспертов, соответствующие одному из проектов, например, проекту Д. Это ранги 5, 5, 1, 6, 8, 5, 6, 5, 6, 5, 7, 1. Затем их надо расположить в порядке неубывания (проще было бы сказать – «в порядке возрастания», но поскольку некоторые ответы совпадают, то приходится использовать непривычный термин «неубывание»). Получим последовательность: 1, 1, 5, 5, 5, 5, 5, 6, 6, 6, 7, 8. На центральных местах - шестом и седьмом - стоят 5 и 5. Следовательно, медиана равна 5.

Таблица 2.

Результаты расчетов по методу средних арифметических

и методу медиан для данных, приведенных в таблице 1.

Сумма рангов

Среднее арифметическое рангов

Итоговый ранг по среднему арифметическому

Медианы рангов

Итоговый ранг по медианам

Медианы совокупностей из 12 рангов, соответствующих определенным проектам, приведены в предпоследней строке табл.2. (При этом медианы вычислены по обычным правилам статистики - как среднее арифметическое центральных членов вариационного ряда.) Итоговое упорядочение комиссии экспертов по методу медиан приведено в последней строке таблицы. Ранжировка (т.е. упорядочение - итоговое мнение комиссии экспертов) по медианам имеет вид:

Б < {М-К, Л} < Сол < Д < Стеф < К <Г-Б. (2)

Поскольку проекты Л и М-К имеют одинаковые медианы баллов, то по рассматриваемому методу ранжирования они эквивалентны, а потому объединены в группу (кластер), т.е. с точки зрения математической статистики ранжировка (4) имеет одну связь.

Сравнение ранжировок по методу средних арифметических и методу медиан. Сравнение ранжировок (1) и (2) показывает их близость (похожесть). Можно принять, что проекты М-К, Л, Сол упорядочены как М-К < Л < Сол, но из-за погрешностей экспертных оценок в одном методе признаны равноценными проекты Л и Сол (ранжировка (1)), а в другом - проекты М-К и Л (ранжировка (2)). Существенным является только расхождение, касающееся упорядочения проектов К и Г-Б: в ранжировке (3) Г-Б < К, а в ранжировке (4), наоборот, К < Г-Б. Однако эти проекты - наименее привлекательные из восьми рассматриваемых, и при выборе наиболее привлекательных проектов для дальнейшего обсуждения и использования на указанное расхождение можно не обращать внимания.

Рассмотренный пример демонстрирует сходство и различие ранжировок, полученных по методу средних арифметических рангов и по методу медиан, а также пользу от их совместного применения.

Метод согласования кластеризованных ранжировок. Проблема состоит в выделении общего нестрогого порядка из набора кластеризованных ранжировок (на статистическом языке - ранжировок со связями). Этот набор может отражать мнения нескольких экспертов или быть получен при обработке мнений экспертов различными методами. Предлагается метод согласования кластеризованных ранжировок, позволяющий «загнать» противоречия внутрь специальным образом построенных кластеров (групп), в то время как упорядочение кластеров соответствует одновременно всем исходным упорядочениям.

В различных прикладных областях возникает необходимость анализа нескольких кластеризованных ранжировок объектов. К таким областям относятся прежде всего экология, инженерный бизнес, менеджмент, экономика, социология, прогнозирование, научные и технические исследования и т.д., особенно те их разделы, что связаны с экспертными оценками (см., например, ). В качестве объектов могут выступать образцы продукции, технологии, математические модели, проекты, кандидаты на должность и др. Кластеризованные ранжировки могут быть получены как с помощью экспертов, так и объективным путем, например, при сопоставлении математических моделей с экспериментальными данными с помощью того или иного критерия качества. Описанный ниже метод был разработан в связи с проблемами химической безопасности биосферы и экологического страхования .

В настоящем пункте рассматривается метод построения кластеризованной ранжировки, согласованной (в раскрытом ниже смысле) со всеми рассматриваемыми кластеризованными ранжировками. При этом противоречия между отдельными исходными ранжировками оказываются заключенными внутри кластеров согласованной ранжировки. В результате упорядоченность кластеров отражает общее мнение экспертов, точнее, то общее, что содержится в исходных ранжировках.

В кластеры заключены объекты, по поводу которых некоторые из исходных ранжировок противоречат друг другу. Для их упорядочения необходимо провести новые исследования. Эти исследования могут быть как формально-математическими (например, вычисление медианы Кемени (о ней – ниже), упорядочения по средним рангам или по медианам и т.п.), так и требовать привлечения новой информации из соответствующей прикладной области, возможно, проведения дополнительных научных или прикладных работ.

Введем необходимые понятия, затем сформулируем алгоритм согласования кластеризованных ранжировок в общем виде и рассмотрим его свойства.

Пусть имеется конечное число объектов, которые мы для простоты изложения будем изображать натуральными числами 1,2,3,...,k и называть их совокупность «носителем». Под кластеризованной ранжировкой, определенной на заданном носителе, понимаем следующую математическую конструкцию . Пусть объекты разбиты на группы, которые будем называть кластерами. В кластере может быть и один элемент. Входящие в один кластер объекты будем заключать в фигурные скобки. Например, объекты 1,2,3,...,10 могут быть разбиты на 7 кластеров: {1}, {2,3}, {4}, {5,6,7}, {8}, {9}, {10}. В этом разбиении один кластер {5,6,7} содержит три элемента, другой - {2,3} - два, остальные пять - по одному элементу. Кластеры не имеют общих элементов, а объединение их (как множеств) есть все рассматриваемое множество объектов (весь носитель).

Вторая составляющая кластеризованной ранжировки - это строгий линейный порядок между кластерами . Задано, какой из них первый, какой второй, и т.д. Будем изображать упорядоченность с помощью знака < . При этом кластеры, состоящие из одного элемента, будем для простоты изображать без фигурных скобок. Тогда кластеризованную ранжировку на основе введенных выше кластеров можно изобразить так:

А = [ 1 < {2,3} < 4 < {5,6,7} < 8 < 9 < 10 ] .

Конкретные кластеризованные ранжировки будем заключать в квадратные скобки. Если для простоты речи термин "кластер" применять только к кластеру не менее чем из 2-х элементов, то можно сказать, что в кластеризованную ранжировку А входят два кластера {2,3} и {5,6,7} и 5 отдельных элементов.

Введенная описанным образом кластеризованная ранжировка является бинарным отношением на носителе - множестве {1,2,3,...,10}. Его структура такова. Задано отношение эквивалентности с 7-ю классами эквивалентности, а именно, {2,3}, {5,6,7}, а 5 классов остальные состоят из оставшихся 5 отдельных элементов. Затем введен строгий линейный порядок между классами эквивалентности.

Введенный математический объект известен в литературе как "ранжировка со связями" (М. Холлендер, Д.Вулф), "упорядочение" (Дж. Кемени, Дж. Снелл), "квазисерия" (Б.Г.Миркин), "совершенный квазипорядок" (Ю.А.Шрейдер ). Учитывая разнобой в терминологии, было признано полезным ввести собственный термин "кластеризованная ранжировка", поскольку в нем явным образом названы основные элементы изучаемого математического объекта - кластеры, рассматриваемые на этапе согласования ранжировок как классы эквивалентности, и ранжировка - строгий совершенный порядок между ними (в терминологии Ю.А.Шрейдера ).

Следующее важное понятие - противоречивость . Оно определяется для четверки - две кластеризованные ранжировки на одном и том же носителе и два различных объекта - элементы того же носителя. При этом два элемента из одного кластера будем связывать символом равенства = , как эквивалентные.

Пусть А и В - две кластеризованные ранжировки. Пару объектов (a,b) назовем «противоречивой»относительно кластеризованных ранжировок А и В, если эти два элемента по-разному упорядочены в А и В, т.е. a < b в А и a > b в В (первый вариант противоречивости) либо a >b в А и a < b в В (второй вариант противоречивости). Отметим, что в соответствии с этим определением пара объектов (a,b ), эквивалентная хотя бы в одной кластеризованной ранжировке, не может быть противоречивой: эквивалентность a = b не образует "противоречия" ни с a < b , ни с a > b . Это свойство оказывается полезным при выделении противоречивых пар.

В качестве примера рассмотрим, кроме А , еще две кластеризованные ранжировки

В = [{1,2} < { 3,4, 5} < 6 < 7 < 9 < {8, 10}],

C = .

Совокупность противоречивых пар объектов для двух кластеризованных ранжировок А и В назовем «ядром противоречий»и обозначим S(A,B). Для рассмотренных выше в качестве примеров трех кластеризованных ранжировок А , В и С , определенных на одном и том же носителе {1, 2, 3,..., 10}, имеем

S (A ,B ) = [(8, 9)], S (A ,C) = [(1, 3), (2,4)],

S (B ,C ) = [(1, 3), (2, 3), (2, 4), (5, 6), (8,9)].

Как при ручном, так и при программном нахождении ядра можно в поисках противоречивых пар просматривать пары (1,2), (1,3), (1,4), .... , (1,k ), затем (2,3), (2,4), ..., (2,k ), потом (3,4), ..., (3, k ), и т.д., вплоть до последней пары (k -1, k ).

Пользуясь понятиями дискретной математики, «ядро противоречий» можно изобразить графом с вершинами в точках носителя. При этом противоречивые пары задают ребра этого графа. Граф для S (A ,B ) имеет только одно ребро (одна связная компонента более чем из одной точки), для S (A ,C ) - 2 ребра (две связные компоненты более чем из одной точки), для S (B ,C ) - 5 ребер (три связные компоненты более чем из одной точки, а именно, {1, 2 , 3, 4}, {5, 6} и {8, 9}).

Каждую кластеризованную ранжировку, как и любое бинарное отношение, можно задать матрицей ||x (a ,b )|| из 0 и 1 порядка k x k . При этом x (a ,b ) = 1 тогда и только тогда, когда a < b либо a = b . В первом случае x (b,a ) = 0, а во втором x (b,a ) = 1. При этом хотя бы одно из чисел x (a,b ) и x (b,a ) равно 1. Из определения противоречивости пары (a, b ) вытекает, что для нахождения всех таких пар достаточно поэлементно перемножить две матрицы ||x (a,b )|| и ||y (a,b )||, соответствующие двум кластеризованным ранжировкам, и отобрать те и только те пары, для которых x(a,b )y (a,b ) = x (b,a )y (b,a )=0.

Предлагаемый алгоритм согласования некоторого числа (двух или более) кластеризованных ранжировок состоят из трех этапов. На первом выделяются противоречивые пары объектов во всех парах кластеризованных ранжировок. На втором формируются кластеры итоговой кластеризованной ранжировки (т.е. классы эквивалентности - связные компоненты графов , соответствующих объединению попарных ядер противоречий). На третьем этапе эти кластеры (классы эквивалентности) упорядочиваются . Для установления порядка между кластерами произвольно выбирается один объект из первого кластера и второй - из второго, порядок между кластерами устанавливается такой же, какой имеет быть между выбранными объектами в любой из рассматриваемых кластеризованных ранжировок. (Если в одной из исходных кластеризованных ранжировок имеет быть равенство, а в другой – неравенство, то при построении итоговой кластеризованной ранжировки используется неравенство.)

Корректность подобного упорядочивания, т.е. его независимость от выбора той или иной пары объектов, вытекает из соответствующих теорем, доказанных в статье .

Два объекта из разных кластеров согласующей кластеризованной ранжировки могут оказаться эквивалентными в одной из исходных кластеризованных ранжировок (т.е. находиться в одном кластере). В таком случае надо рассмотреть упорядоченность этих объектов в какой-либо другой из исходных кластеризованных ранжировок. Если же во всех исходных кластеризованных ранжировках два рассматриваемых объекта находились в одном кластере, то естественно считать (и это является уточнением к этапу 3 алгоритма), что они находятся в одном кластере и в согласующей кластеризованной ранжировке.

Результат согласования кластеризованных ранжировок А , В , С ,... обозначим f(А, В, С ,...). Тогда

f (А, В ) = ,

f (А, С ) = [{1,3}<{2, 4}<6<{5,7}<8<9<10],

f(В, С ) = [{1,2,3,4}<{5,6}<7<{8,9}<10],

f (А, В, С ) = f (В, С ) = [{1,2,3,4} <{5,6}<7<{8, 9}<10].

Итак, в случае f (А, В ) дополнительного изучения с целью упорядочения требуют только объекты 8 и 9. В случае f (А, С ) кластер {5,7} появился не потому, что относительно объектов 5 и 7 имеется противоречие, а потому, что в обеих исходных ранжировках эти объекты не различаются. В случае f(В , С ) четыре объекта 1,2,3,4 объединились в один кластер, т.е. кластеризованные ранжировки оказались настолько противоречивыми, что процедура согласования не позволила провести достаточно полную декомпозицию задачи нахождения итогового мнения экспертов.

Рассмотрим некоторые свойства алгоритмов согласования.

1. Пусть D = f (А , В , C ,...). Если a в согласующей кластеризованной ранжировке D , то a или a=b в каждой из исходных ранжировок А , В , C , ..., причем хотя бы в одной из них справедливо строгое неравенство.

2. Построение согласующих кластеризованных ранжировок может осуществляться поэтапно. В частности, f (A,B,C ) = f (f (A,B ), f (A ,C ), f (B,C )). Ясно, что ядро противоречий для набора кластеризованных ранжировок является объединением таких ядер для всех пар рассматриваемых ранжировок .

3. Построение согласующих кластеризованных ранжировок нацелено на выделение общего упорядочения в исходных кластеризованных ранжировках. Однако при этом некоторые общие свойства исходных кластеризованных ранжировок могут теряться. Так, при согласовании ранжировок В и С , рассмотренных выше, противоречия в упорядочении элементов 1 и 2 не было - в ранжировке В эти объекты входили в один кластер, т.е. 1 = 2, в то время как 1<2 в кластеризованной ранжировке С . Значит, при их отдельном рассмотрении можно принять упорядочение 1<2. Однако в f (В,C ) они попали в один кластер, т.е. возможность их упорядочения исчезла. Это связано с поведением объекта 3, который "перескочил" в С на первое место и "увлек с собой в противоречие" пару (1, 2), образовав противоречивые пары и с 1, и с 2. Другими словами, связная компонента графа, соответствующего ядру противоречий, сама по себе не всегда является полным графом. Недостающие ребра при этом соответствуют парам типа (1, 2), которые сами по себе не являются противоречивыми, но "увлекаются в противоречие" другими парами.

4. Необходимость согласования кластеризованных ранжировок возникает, в частности, при разработке методики применения экспертных оценок в задачах экологического страхования и химической безопасности биосферы. Как уже говорилось, популярным является метод упорядочения по средним рангам, в котором итоговая ранжировка строится на основе средних арифметических рангов, выставленных отдельными экспертами . Однако из теории измерений известно (см. главу 2.1), что более обоснованным является использование не средних арифметических, а медиан. Вместе с тем метод средних рангов весьма известен и широко применяется, так что просто отбросить его нецелесообразно. Поэтому было принято решение об одновременном применении обеих методов. Реализация этого решения потребовала разработки методики согласования двух указанных кластеризованных ранжировок.

5. Область применения рассматриваемого метода не ограничивается экспертными оценками. Он может быть использован, например, для сравнения качества математических моделей процесса испарения жидкости. Имелись данные экспериментов и результаты расчетов по 8 математическим моделям. Сравнивать модели можно по различным критериям качества. Например, по сумме модулей относительных отклонений расчетных и экспериментальных значений. Можно действовать и по другому: в каждой экспериментальной точке упорядочить модели по качеству, а потом получать единые оценки методами средних рангов и медиан. Использовались и иные методы. Затем применялись методы согласования полученных различными способами кластеризованных ранжировок. В результате оказалось возможным упорядочить модели по качеству и использовать это упорядочение при разработке банка математических моделей, используемого в задачах химической безопасности биосферы.

6. Рассматриваемый метод согласования кластеризованных ранжировок построен в соответствии с методологией теории устойчивости , согласно которой результат обработки данных, инвариантный относительно метода обработки, соответствует реальности, а результат расчетов, зависящий от метода обработки, отражает субъективизм исследователя, а не объективные соотношения.

Основные математические задачи анализа экспертных оценок. Ясно, что при анализе мнений экспертов можно применять самые разнообразные статистические методы, описывать их - значит описывать практически всю прикладную статистику. Тем не менее можно выделить основные широко используемые в настоящее время методы математической обработки экспертных оценок - это проверка согласованности мнений экспертов (или классификация экспертов, если нет согласованности) и усреднение мнений экспертов внутри согласованной группы.

Поскольку ответы экспертов во многих процедурах экспертного опроса - не числа, а такие объекты нечисловой природы, как градации качественных признаков, ранжировки, разбиения, результаты парных сравнений, нечеткие предпочтения и т.д., то для их анализа оказываются полезными методы статистики объектов нечисловой природы.

Почему ответы экспертов часто носят нечисловой характер? Наиболее общий ответ состоит в том, что люди не мыслят числами. В мышлении человека используются образы, слова, но не числа. Поэтому требовать от эксперта ответ в форме чисел - значит насиловать его разум. Даже в экономике предприниматели, принимая решения, лишь частично опираются на численные расчеты. Это видно из условного (т.е. определяемого произвольно принятыми соглашениями, обычно оформленными в виде инструкций) характера балансовой прибыли, амортизационных отчислений и других экономических показателей. Поэтому фраза типа «фирма стремится к максимизации прибыли» не может иметь строго определенного смысла. Достаточно спросить: «Максимизация прибыли - за какой период?» И сразу станет ясно, что степень оптимальности принимаемых решений зависит от горизонта планирования (на экономико-математическом уровне этот сюжет рассмотрен в монографии ).

Эксперт может сравнить два объекта, сказать, какой из двух лучше (метод парных сравнений), дать им оценки типа "хороший", "приемлемый", "плохой", упорядочить несколько объектов по привлекательности, но обычно не может ответить, во сколько раз или на сколько один объект лучше другого. Другими словами, ответы эксперта обычно измерены в порядковой шкале, или являются ранжировками, результатами парных сравнений и другими объектами нечисловой природы, но не числами. Распространенное заблуждение состоит в том, что ответы экспертов стараются рассматривать как числа, занимаются "оцифровкой" их мнений, приписывая этим мнениям численные значения - баллы, которые потом обрабатывают с помощью методов прикладной статистики как результаты обычных физико-технических измерений. В случае произвольности "оцифровки" выводы, полученные в результате обработки данных, могут не иметь отношения к реальности. В связи с "оцифровкой" уместно вспомнить классическую притчу о человеке, который ищет потерянные ключи под фонарем, хотя потерял их в кустах. На вопрос, почему он так делает, отвечает: "Под фонарем светлее". Это, конечно, верно. Но, к сожалению, весьма малы шансы найти потерянные ключи под фонарем. Так и с "оцифровкой" нечисловых данных. Она дает возможность имитации научной деятельности, но не возможность найти истину.

Проверка согласованности мнений экспертов и классификация экспертных мнений. Ясно, что мнения разных экспертов различаются. Важно понять, насколько велико это различие. Если мало - усреднение мнений экспертов позволит выделить то общее, что есть у всех экспертов, отбросив случайные отклонения в ту или иную сторону. Если велико - усреднение является чисто формальной процедурой. Так, если представить себе, что ответы экспертов равномерно покрывают поверхность бублика, то формальное усреднение укажет на центр дырки от бублика, а такого мнения не придерживается ни один эксперт. Из сказанного ясна важность проблемы проверки согласованности мнений экспертов.

Разработан ряд методов такой проверки. Статистические методы проверки согласованности зависят от математической природы ответов экспертов. Соответствующие статистические теории весьма трудны, если эти ответы - ранжировки или разбиения, и достаточно просты, если ответы - результаты независимых парных сравнений. Отсюда вытекает рекомендация по организации экспертного опроса: не старайтесь сразу получить от эксперта ранжировку или разбиение, ему трудно это сделать, да и имеющиеся математические методы не позволяют далеко продвинуться в анализе подобных данных. Например, рекомендуют проверять согласованность ранжировок с помощью коэффициента ранговой конкордации Кендалла-Смита. Но давайте вспомним, какая статистическая модель при этом используется. Проверяется нулевая гипотеза, согласно которой ранжировки независимы и равномерно распределены на множестве всех ранжировок. Если эта гипотеза принимается, то конечно, ни о какой согласованности мнений экспертов говорить нельзя. А если отклоняется? Тоже нельзя. Например, может быть два (или больше) центра, около которых группируются ответы экспертов. Нулевая гипотеза отклоняется. Но разве можно говорить о согласованности?

Эксперту гораздо легче на каждом шагу сравнивать только два объекта. Пусть он занимается парными сравнениями. Непараметрическая теория парных сравнений (теория люсианов) позволяет решать более сложные задачи, чем статистика ранжировок или разбиений. В частности, вместо гипотезы равномерного распределения можно рассматривать гипотезу однородности, т.е. вместо совпадения всех распределений с одним фиксированным (равномерным) можно проверять лишь совпадение распределений мнений экспертов между собой, что естественно трактовать как согласованность их мнений. Таким образом, удается избавиться от неестественного предположения равномерности.

При отсутствии согласованности экспертов естественно разбить их на группы сходных по мнению. Это можно сделать различными методами статистики объектов нечисловой природы, относящимися к кластер-анализу, предварительно введя метрику в пространство мнений экспертов. Идея американского математика Джона Кемени об аксиоматическом введении метрик (см. ниже) нашла многочисленных продолжателей. Однако методы кластер-анализа обычно являются эвристическими. В частности, невозможно с позиций статистической теории обосновать "законность" объединения двух кластеров в один. Имеется важное исключение - для независимых парных сравнений (люсианов) разработаны методы, позволяющие проверять возможность объединения кластеров как статистическую гипотезу . Это - еще один аргумент за то, чтобы рассматривать теорию люсианов как ядро математических методов экспертных оценок .

Нахождение итогового мнения комиссии экспертов. Пусть мнения комиссии экспертов или какой-то ее части признаны согласованными. Каково же итоговое (среднее, общее) мнение комиссии? Согласно идее Джона Кемени следует найти среднее мнение как решение оптимизационной задачи . А именно, надо минимизировать суммарное расстояние от кандидата в средние до мнений экспертов. Найденное таким способом среднее мнение называют "медианой Кемени".

Математическая сложность состоит в том, что мнения экспертов лежат в некотором пространстве объектов нечисловой природы. Общая теория подобного усреднения построена в ряде работ, в частности, показано, что в силу обобщения закона больших чисел среднее мнение при увеличении числа экспертов (чьи мнения независимы и одинаково распределены) приближается к некоторому пределу, который естественно назвать математическим ожиданием (случайного элемента, имеющего то же распределение, что и ответы экспертов).

В конкретных пространствах нечисловых мнений экспертов вычисление медианы Кемени может быть достаточно сложным делом. Кроме свойств пространства, велика роль конкретных метрик. Так, в пространстве ранжировок при использовании метрики, связанной с коэффициентом ранговой корреляции Кендалла, необходимо проводить достаточно сложные расчеты, в то время как применение показателя различия на основе коэффициента ранговой корреляции Спирмена приводит к упорядочению по средним рангам.

Бинарные отношения и расстояние Кемени. Как известно, бинарное отношение А на конечном множестве Q = {q 1 , q 2 ,..., q k } - это подмножество декартова квадрата Q 2 = {(q m , q n), m,n = 1,2,…,k} . При этом пара (q m , q n) входит в А тогда и только тогда, когда между q m и q n имеется рассматриваемое отношение.

Напомним, что каждую кластеризованную ранжировку, как и любое бинарное отношение, можно задать квадратной матрицей ||x(a,b) || из 0 и 1 порядка k x k . При этом x(a b) = 1 тогда и только тогда, когда a < b либо a = b . В первом случае x(b a) = 0, а во втором x(b a) = 1. При этом хотя бы одно из чисел x(a b) и x(b,a) равно 1.

В экспертных методах используют, в частности, такие бинарные отношения, как ранжировки (упорядочения, или разбиения на группы, между которыми имеется строгий порядок), отношения эквивалентности, толерантности (отношения сходства). Как следует из сказанного выше, каждое бинарное отношение А можно описать матрицей || a(i,j) || из 0 и 1, причем a(i,j) = 1 тогда и только тогда, когда qi и qj находятся в отношении А , и a(i,j) = 0 в противном случае.

Определение. Расстоянием Кемени между бинарными отношениями А и В, описываемыми матрицами ||a(i,j) || и ||b(i,j) || соответственно, называется число

D (A, B) = ∑ │a(i,j) - b(i,j) │,

где суммирование производится по всем i,j от 1 до k , т.е. расстояние Кемени между бинарными отношениями равно сумме модулей разностей элементов, стоящих на одних и тех же местах в соответствующих им матрицах.

Легко видеть, что расстояние Кемени - это число несовпадающих элементов в матрицах ||a(i,j) || и ||b(i,j) ||.

Расстояние Кемени основано на некоторой системе аксиом. Эта система аксиом и вывод из нее формулы для расстояния Кемени между упорядочениями содержится в книге , которая сыграла большую роль в развитии в нашей стране такого научного направления, как анализ нечисловой информации . В дальнейшем под влиянием Кемени были предложены различные системы аксиом для получения расстояний в тех или иных нужных для социально-экономических исследований пространствах, например, в пространствах множеств .

Медиана Кемени и законы больших чисел. С помощью расстояния Кемени находят итоговое мнение комиссии экспертов. Пусть А 1 , А 2 , А 3 ,…, А р - ответы р экспертов, представленные в виде бинарных отношений. Для их усреднения используют т.н. медиану Кемени

Arg min ∑ D (A i ,A) ,

где Arg min - то или те значения А , при которых достигает минимума указанная сумма расстояний Кемени от ответов экспертов до текущей переменной А , по которой и проводится минимизация. Таким образом,

D (A i ,A) = D (A 1 ,A) + D (A 2 ,A) + D (A 3 ,A) +…+ D (A р,A) .

Кроме медианы Кемени, используют среднее по Кемени, в котором вместо D (A i ,A) стоит D 2 (A i ,A) .

Медиана Кемени - частный случай определения эмпирического среднего в пространствах нечисловой природы . Для нее справедлив закон больших чисел, т.е. эмпирическое среднее приближается при росте числа составляющих (т.е. р - числа слагаемых в сумме), к теоретическому среднему:

Arg min ∑ D (A i ,A) → Arg min М D (A 1 , A) .

Здесь М - символ математического ожидания. Предполагается, что ответы р экспертов А 1 , А 2 , А 3 ,…, А р есть основания рассматривать как независимые одинаково распределенные случайные элементы (т.е. как случайную выборку) в соответствующем пространстве произвольной природы, например, в пространстве упорядочений или отношений эквивалентности. Систематически эмпирические и теоретические средние и соответствующие различные варианты законов больших чисел изучены в ряде работ (см., например, ).

Законы больших чисел показывают, во-первых, что медиана Кемени обладает устойчивостью по отношению к незначительному изменению состава экспертной комиссии; во-вторых, при увеличении числа экспертов она приближается к некоторому пределу. Его естественно рассматривать как истинное мнение экспертов, от которого каждый из них несколько отклонялся по случайным причинам.

Рассматриваемый здесь закон больших чисел является обобщением известного в статистике "классического" закона больших чисел. Он основан на иной математической базе - теории оптимизации, в то время как "классический" закон больших чисел использует суммирование. Упорядочения и другие бинарные отношения нельзя складывать, поэтому приходится применять иную математику.

Вычисление медианы Кемени - задача целочисленного программирования. В частности, для ее нахождения используется различные алгоритмы дискретной математики, в частности, основанные на методе ветвей и границ. Применяют также алгоритмы, основанные на идее случайного поиска, поскольку для каждого бинарного отношения нетрудно найти множество его соседей.

Рассмотрим пример вычисления медианы Кемени. Пусть дана квадратная матрица (порядка 9) попарных расстояний для множества бинарных отношений из 9 элементов А 1 , А 2 , А 3 ,..., А 9 (см. табл.3). Найти в этом множестве медиану для множества из 5 элементов {А 2 , А 4 , А 5 , А 8 , А 9 }.

Таблица 3.

Матрица попарных расстояний

В соответствии с определением медианы Кемени следует ввести в рассмотрение функцию

С (А ) = ∑ D(A i ,A) = D(A 2 ,A)+D(A 4 ,A)+D(A 5 ,A)+D(A 8 ,A)+D(A 9 ,A),

С (А 1 ) = D (A 2 ,A 1) + D (A 4 ,A 1) + D (A 5 ,A 1) +D (A 8 ,A 1) + D (A 9 ,A 1) =

= 2 + 1 +7 +3 +11 = 24,

С (А 2 ) = D (A 2 ,A 2) + D (A 4 ,A 2) + D (A 5 ,A 2) +D (A 8 ,A 2) + D (A 9 ,A 2) =

= 0 + 6 + 1 + 5 + 1 = 13,

С (А 3 ) = D (A 2 ,A 3) + D (A 4 ,A 3) + D (A 5 ,A 3) +D (A 8 ,A 3) + D (A 9 ,A 3) =

= 5 + 2 + 2 + 5 +7 = 21,

С (А 4 ) = D (A 2 ,A 4) + D (A 4 ,A 4) + D (A 5 ,A 4) +D (A 8 ,A 4) + D (A 9 ,A 4) =

= 6 + 0 + 5 + 8 + 8 = 27,

С (А 5 ) = D (A 2 ,A 5) + D (A 4 ,A 5) + D (A 5 ,A 5) +D (A 8 ,A 5) + D (A 9 ,A 5) =

= 1 + 5 + 0 +3 + 7 = 16,

С (А 6 ) = D (A 2 ,A 6) + D (A 4 ,A 6) + D (A 5 ,A 6) +D (A 8 ,A 6) + D (A 9 ,A 6) =

= 3 + 4 + 10 + 1 + 5 = 23,

С (А 7 ) = D (A 2 ,A 7) + D (A 4 ,A 7) + D (A 5 ,A 7) +D (A 8 ,A 7) + D (A 9 ,A 7) =

= 2 + 3 +1 + 6 + 3 = 15,

С (А 8 ) = D (A 2 ,A 8) + D (A 4 ,A 8) + D (A 5 ,A 8) +D (A 8 ,A 8) + D (A 9 ,A 8) =

= 5 + 8 + 3 + 0 +9 = 25,

С (А 9 ) = D (A 2 ,A 9) + D (A 4 ,A 9) + D (A 5 ,A 9) +D (A 8 ,A 9) + D (A 9 ,A 9) =

= 1 + 8 + 7 + 9 + 0 = 25.

Из всех вычисленных сумм наименьшая равна 13, и достигается она при А=А 2 , следовательно, медиана Кемени - это множество {А 2 }, состоящее из одного элемента А 2 .

Предыдущая

Как мы и сказали в заключение прошлого урока, принять решение - это лишь половина дела. Вторая половина - оценить, насколько оно было правильным, верным и эффективным. Важно это по той причине, что оценка позволяет понять, насколько грамотными были предпринятые действия, приведут ли они к успеху в будущем, и вообще, стоит ли на них рассчитывать. Оценка принятых решений - это своеобразная лакмусовая бумажка, проверяющая их на результативность. Однако очень важно понимать, что обычные решения в жизни и управленческие решения оцениваются по разным алгоритмам.

Оценка повседневных решений

Для начала немного повторимся: если перед вами встала необходимость принять какое-то сложное решение, последствия которого вас беспокоят, в первую очередь стоит несколько раз обдумать все ЗА и ПРОТИВ, оценить ситуацию и возможные варианты ее разрешения. принятия решения - это первый шаг на пути к его эффективности.

Конечным продуктом анализа принятого решения всегда будет выступать результат. На основе его можно будет судить, достигнута ли цель, какие были задействованы для ее достижения ресурсы, сколько было потрачено сил и времени, что получилось в итоге, и стоила ли игра свеч.

Итак, если принятое решение связано с какими-либо исчисляемыми величинами, его эффективность вполне поддается вычислению в относительных или абсолютных единицах. Например, если вы решили , рассчитывая выйти на новый уровень дохода, оценить эффективность своего решения вы можете уже по истечении месяца или полугодия. Если вы решили запустить новую рекламу своего продукта, понять, насколько было эффективно это решение, вы сможете, установив прирост клиентов, увеличение процента продаж и чистую прибыль.

В случае, когда решение связано с величинами неисчисляемыми, его оценка происходит иначе. Нужно понять, достигли ли вы поставленного изначально результата. К примеру, поставив перед собой задачу повысить свою личную продуктивность и начать больше успевать, вы решили . Подвести итоги можно будет уже через неделю, проставив галочки рядом с выполненными делами в своем списке.

Аналогичным образом производится оценка принятых решений и в любой другой сфере жизни. Схема предельно проста: цель либо достигается, либо нет. Если она достигнута, вы все сделали правильно, если же нет - нужно что-то менять. Кроме того, оценка эффективности может осуществляться и с оглядкой на затраченные ресурсы: чем меньше сил, времени, денег и других средств вы израсходовали на реализацию своего решения, тем оно эффективнее. Все просто.

Как мы видим, в обычной каждодневной жизни делать анализ принятых решений достаточно легко. Но есть другая категория решений - управленческие, и их анализировать намного сложнее. На эту тему пишутся целые книги и пособия, и рассмотреть все детали в одном уроке, к сожалению, не получится. Однако указать на основы этого процесса вполне реально. Этим мы и займемся.

Основы оценки управленческих решений

Принятие любого управленческого решения можно назвать промежуточным этапом между управленческим решением и управленческим воздействием. Это в свою очередь говорит о том, что эффективность такого решения проявляется в совокупности эффективности его разработки и реализации.

Всего существует более шести десятков всевозможных частных показателей эффективности деятельности организации. К ним относятся оборачиваемость оборотных средств, рентабельность, окупаемость вложений, соотношение темпов роста производительности труда и средней заработной платы и т.д.

Оценка эффективности управленческих решений предполагает использование понятия совокупного экономического эффекта, т.к. в полученные результаты в обязательном порядке включается трудовой вклад людей.

Следует сказать также, что для организаций очень важно удовлетворять требования потребителей и в то же время улучшать эконмические показатели своей деятельности. Исходя из этого, при оценке эффективности решений появляется необходимость брать в расчет два аспекта результативности - социальный и экономический.

Проиллюстрировать алгоритм оценки эффективности управленческих решений можно, взяв для примера торговую организацию. Так, чтобы понять, результативным было решение или нет, необходимо вести раздельный учет доходов и расходов касаемо разных товарных групп. Учитывая, что на практике делать это весьма сложно, в процессе анализа распространено использование так называемых удельных качественных показателей. Здесь таковыми являются прибыль из расчета на 1 млн. рублей товарооборота и издержки обращения из расчета на 1 млн. товарных запасов.

Эффективность управленческих решений в торговых организациях выражается совокупно в количественной форме - это прирост объемов товарооборота, повышение скорости оборачиваемости продукта и снижение суммы товарных резервов.

Если же нужно понять итоговый финансово-экономический результат реализации управленческих решений, следует установить, насколько увеличиваются доходы конкретной организации и насколько сокращаются ее расходы.

Определить экономическую эффективность решения, повлиявшего на рост товарооборота и увеличение прибыли, можно при помощи формулы:

Эф П*Т П * (Тф — Тпл), где:

  • Эф - показатель экономической эффективности
  • П - показатель прибыли из расчета на 1 млн. рублей товарооборота
  • Т - показатель прироста объема товарооборота
  • Тф - показатель фактического товарооборота, наблюдающийся после реализации управленческого решения
  • Тпл - показатель планового товарооборота (либо товарооборота за сопоставимый отрезок до реализации управленческого решения)

В данном примере экономическую эффективность отражает снижение показателей издержек обращения (коммерческих затрат, затрат на продажу), которые приходятся на остаток товаров. Отсюда и повышение показателей прибыли. Эффективность здесь определяется по формуле:

Эф =ИО*З ИО*(З2 — З1), где:

  • Эф - показатель экономической эффективности конкретного управленческого решения
  • ИО - показатель объемов издержек обращения из расчета на 1 млн. рублей товарных запасов
  • З - показатель величины изменений (уменьшений) товарных запасов
  • 31 - показатель объемов товарных запасов до реализации управленческого решения
  • 32 - показатель объемов товарных запасов после реализации управленческого решения

В нашем случае экономическая эффективность управленческого решения отразилась и на увеличении темпов оборачиваемости товаров. Ее показатель можно рассчитать по формуле:

Эф Ио*Об Ио (Об ф — Об пл), где:

  • Эф - показатель экономической эффективности управленческого решения
  • Ио - показатель одновременного объема издержек обращения
  • Об - показатель повышения темпов оборачиваемости товаров
  • Об пл - показатель оборачиваемости товаров до принятия управленческого решения
  • Об ф - показатель оборачиваемости товаров после принятия управленческого решения

В дополнение ко всему для анализа эффективности управленческих решений принято использовать несколько специализированных методов, упрощающих процедуру и приводящих к более точным результатам.

Методы оценки управленческих решений

В процессе оценки эффективности управленческих решений применяется семь основных методов:

  • Индексный метод. Его применяют для анализа наиболее сложных явлений с элементами, не поддающимися измерениям. Индексы здесь играют роль относительных показателей. Они помогают оценить, как выполняются плановые задания, и определить динамику разных процессов и явлений. Индексный метод призван помочь разложить обобщающий показатель на факторы относительных и абсолютных отклонений.
  • Балансовый метод. Его суть состоит в том, что сопоставляются взаимосвязанные показатели работы организации. Цель - определить влияние отдельных факторов и найти резервы для повышения эффективности компании. Взаимосвязь отдельных показателей представляется равенством итогов, которые получены после определенных сопоставлений.
  • Метод элиминирования. Он обобщает два первых метода и предлагает возможность для определения воздействия какого-то одного фактора на общий показатель деятельности компании. При этом предполагается, что все другие факторы функционировали в одной среде - согласно плану.
  • Графический метод. Является способом наглядного представления работы организации, определения комплекса показателей и оформления результатов произведенных аналитических мероприятий.
  • Метод сравнения. Предлагает возможность оценки работы компании, выявления отклонений фактических показателей от базисных величин, установления их причин и поиска резервов последующего улучшения деятельности.
  • Функционально-стоимостный анализ. Его можно назвать методом системного исследования, применяющегося, исходя из назначения объекта изучения. Его задача - повысить полезный эффект (отдачу) совокупных затрат за жизненный цикл объекта. Отличительной особенностью является то, что метод позволяет установить целесообразность ряда функций, которые будут выполняться проектируемым объектом в конкретной среде, а также проверить необходимость каких-то функций объекта, который уже существует.
  • Экономико-математические методы. Применяются, когда требуется выбрать оптимальные варианты, определяющие специфику управленческих решений в текущих или предполагаемых экономических условиях. Задач, которые решают экономико-математические методы, множество. Среди них установление наилучшего ассортимента производимого продукта, оценка плана производства, сравнительный анализ экономической эффективности применения ресурсов, оптимизация производственной программы и другие.

На то, насколько будет эффективна работа организации, самым серьезным образом влияют управленческие решения. Это причина, по которой важно максимально овладеть управленческим аппаратом, теорией и практикой разработки и реализации решений. Это значит, что нужно обладать навыком выбора лучшей альтернативы среди нескольких вариантов.

Любые управленческие решения обусловлены достоверностью и полнотой имеющихся данных. Поэтому они могут приниматься как в условиях определенности, так и в условиях неопределенности.

Принятие управленческих решений как процесс представляет собой циклическую последовательность действий ответственного лица по разрешению актуальных проблем. Эти действия заключаются в анализе ситуации, разработке возможных путей решения, выборе и осуществлении лучшего из них.

Практика показывает, что на принятие решений на любом уровне подвержено погрешностям. На это влияют многие причины, т.к. экономическое развитие включает в себя большое количество самых разных ситуаций, которые нужно разрешать.

Особое место среди причин того, почему управленческие решения оказываются малоэффективными, занимает несоблюдение или банальное незнание технологии их генерации и последующего выполнения. А для этого принято использовать теоретическую информацию, методы и техники, о которых мы говорили в предыдущих уроках.

Все, сказанное выше, безусловно, описывает лишь базовые предпосылки оценки эффективности управленческих решений. Чтобы правильно применять их на практике, необходимо либо иметь соответствующее образование, либо погрузиться в изучение специализированной литературы, т.к. есть огромное количество тонкостей, нюансов, методик и чисто технических данных, которые нужно изучить, усвоить и освоить. Этот урок может служить отправной точкой для последующего углубления в специфику оценки эффективности управленческих решений.

В заключение же нашего курса хотелось бы осветить еще одну тему, знания в которой просто необходимы для принятия правильных решений в жизни, обучении и на работе. Это тема психологии принятия решений. И рассмотрим мы ее с позиции Даниэля Канемана - психолога и одного из основоположников поведенческих финансов и психологической экономической теории. В своих объяснениях иррационального отношения людей к риску в управлении своим поведениям и принятии решений он объединяет когнитивистику и экономику. Идеи Канемана окажут вам существенную поддержку в повышении своей эффективности.

Хотите проверить свои знания?

Если вы хотите проверить свои теоретические знания по теме курса и понять, насколько он вам подходит, можете пройти наш тест. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу.

Loading...Loading...