О двигателях для межконтинентальных баллистических ракет. Жидкостный ракетный двигатель Принцип работы ракетного двигателя на жидком топливе

Из повседневной практики известно, что в двигателе внутреннего сгорания, топке парового котла - всюду, где происходит сгорание, самое активное участие принимает атмосферный кислород. Без него нет горения. В космическом пространстве воздуха нет, поэтому для работы ракетных двигателей необходимо иметь топливо, содержащее два компонента - горючее и окислитель.

В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, димстилгидразин, жидкий водород, а в качестве окислителя - жидкий кислород, пероксид водорода, азотная кислота, жидкий фтор. Горючее и окислитель для ЖРД хранятся раздельно, в специальных баках и под давлением или с помощью насосов подаются в камеру сгорания, где при их соединении развивается температура 3000 - 4500 °С.

Продукты сгорания, расширяясь, приобретают скорость 2500-4500 м/с, создавая реактивную тягу. Чем больше масса и скорость истечения газов, тем больше сила тяги двигателя. Насосы подают топливо к головке двигателя, в которой смонтировано большое число форсунок. Через одни из них в камеру впрыскивается окислитель, через другие - горючее. В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого материала ни была бы сделана. ЖРД, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двухстеночной. В зазоре между стенками протекает компонент топлива.

Большой удельный импульс тяги создает двигатель, работающий на жидком кислороде и жидком водороде. В реактивной струе этого двигателя газы мчатся со скоростью немногим больше 4 км/с. 2

Температура струи около 3000°С, и состоит она из перегретого водяного пара, который образуется при сгорании водорода в кислороде. Основные данные типичных топлив для ЖРД (на Земле) приведены в таблице.

Окислитель Горючее Плотность, кг/м3 Удельный импульс тяги, м/с Удельная теплота сгорания, кДж/кг

Азотная кислота Керосин 1400 2900 6100

Жидкий кислород Керосин 1036 3283 9200

Жидкий кислород Жидкий водород 345 4164 13400

Жидкий кислород Диметилгидразин 1000 3381 9200

Жидкий фтор Гидразин 1312 4275 9350

Основные характеристики жидких ракетных топлив

Но у кислорода наряду с рядом достоинств есть и один недостаток - при нормальной температуре он представляет собой газ. Понятно, что применять в ракете газообразный кислород нельзя, ведь в этом случае пришлось бы хранить его под большим давлением в массивных баллонах. Поэтому уже Циолковский, первый предложивший кислород в качестве компонента ракетного топлива, говорил о жидком кислороде. Чтобы превратить кислород в жидкость, его нужно охладить до температуры -183 °С. Однако сжиженный кислород легко и быстро испаряется, даже если его хранить в специальных теплоизолированных сосудах. Поэтому нельзя, например, долго держать снаряженной ракету, двигатель которой работает на жидком кислороде. Приходится заправлять кислородный бак такой ракеты непосредственно перед пуском.

Азотная кислота не обладает таким недостатком и поэтому является «сохраняющимся> окислителем. Этим объясняется ее прочное положение в ракетной технике, несмотря на существенно меньший удельный импульс тяги, которую она обеспечивает.

Слева - Твердотопливный Ракетный Двигатель (ТПРД)

Справа - Гибридный ракетный двигатель

Использование фтора - наиболее сильного из всех известных химии окислителей - позволит существенно увеличить эффективность ЖРД. Правда, жидкий фтор неудобен в эксплуатации из-за ядовитости и низкой температуры кипения (-188 °С). Но это не останавливает ракетчиков: экспериментальные двигатели на фторе уже существуют. Ф. А. Цандер предложил использовать в качестве горючего легкие металлы - литий, бериллий и др., в особенности как добавку к обычному топливу, например водородно-кислородному. Подобные «тройные композиции» способны обеспечить наибольшую возможную для химических топлив скорость истечения до 5 км/с. Но это уже, вероятно, предел ресурсов химии. Большего она практически сделать пока не может.

Эффективность двигательной установки (ДУ) с ЖРД возрастает с увеличением удельного импульса тяги и плотности топлива. Причем в последнее время предъявляется все больше требований к экологической чистоте как самих компонентов топлива, так и продуктов их сгорания. В настоящее время жидкий кислород и жидкий водород являются наилучшим высокоэффективным, экологически чистым топливом. Однако чрезвычайно низкая плотность жидкого водорода (всего 70 кг/м3) существенно ограничивает возможность его применения. Наилучшими компонентами топлива для ДУ первой ступени являются жидкий кислород и углеводородное горючее. До сих пор в качестве углеводородного горючего (УВГ) чаще всего используют керосин. Однако керосину свойственен ряд недостатков, в связи с чем рассматривается применение метана (СН4), пропана (С3Н8) и сжиженного природного газа.

1 - Камера сгорания

3 - Турбина

4 - Насос окислителя

5 - Насос горючего

7 - Газогенератор

СХЕМА ЖРД БЕЗ ДОЖИГАНИЯ ГАЗОГЕНЕРАТОРНОГО ГАЗА

Увеличение давления в камере сгорания является вторым по важности способом повышения энергетических характеристик ЖРД. Увеличение давления в камерах ЖРД способствует также уменьшению габаритных размеров силовой установки. Следует отметить, что увеличение удельного импульса тяги ЖРД, сокращение габаритных размеров двигателей и носителя в целом может быть обеспечено применением выдвижного сопловного насадка (двухпозиционное сопло), т. е. применением сопла с высотной компенсацией

1 - Камера сгорания

2 - Газовод

3 - Турбина

4 - Насос окислителя

5 - Насос горючего

6 - Генераторный насос горючего

7 - Газогенератор

СХЕМА ЖРД С ДОЖИГАНИЕМ ГАЗОГЕНЕРАТОРНОГО ГАЗА

Хотя мы и начали рассказ с ЖРД, нужно сказать, что первым был создан термохимический ракетный двигатель на твердом топливе - ТТРД. Топливо - специальный порох - находится здесь непосредственно в камере сгорания. Камера с реактивным соплом - вот и вся конструкция. РДТТ имеют много преимуществ перед двигателями на жидком топливе: они просты в изготовлении, длительное время могут храниться, всегда готовы к действию, взрывобезопасны. Но по удельному импульсу тяги РДТТ на 10 - 30% уступают жидкостным.

Разработкой отечественных топлив в течение многих лет занимались ученые Государственного института прикладной химии под руководством В. С. Шпака в городе Ленинграде. В зарубежных РН используется:

Смесевое твердое топливо на основе полибутадиенового каучука (НТРВ);

Смесевое твердое топливо на основе полибутадиенакрилнитрильного каучука (PBAN).

Россия располагает развитыми стратегическими ядерными силами, основным компонентом которых являются межконтинентальные баллистические ракеты разных типов, используемые в составе стационарных или подвижных грунтовых комплексов, а также на подводных лодках. При определенном сходстве на уровне базовых идей и решений, изделия этого класса имеют заметные различия. В частности, используются ракетные двигатели разных типов и классов, соответствующие тем или иным требованиям заказчика.

С точки зрения особенностей силовых установок все устаревшие, актуальные и перспективные МБР можно разделить на два основных класса. Такое может оснащаться жидкостными ракетными двигателями (ЖРД) или двигателями на твердом топливе (РДТТ). Оба класса имеют свои преимущества, благодаря чему находят применение в различных проектах, и пока ни один из них не смог вытеснить из своей области «конкурента». Вопрос силовых установок представляет большой интерес и стоит отдельного рассмотрения.

и теория

Известно, что первые ракеты, появившиеся много веков назад, оснащались твердотопливными двигателями на самом простом горючем. Такая силовая установка сохраняла свои позиции до прошлого века, когда были созданы первые системы на жидком топливе. В дальнейшем развитие двух классов двигателей шло параллельно, хотя ЖРД или РДТТ время от времени сменяли друг друга в качестве лидеров отрасли.

Пуск ракеты УР-100Н УТТХ с жидкостным двигателем. Фото Rbase.new-factoria.ru

Первые дальнобойные ракеты, развитие которых привело к появлению межконтинентальных комплексов, оснащались жидкостными двигателями. В середине прошлого века именно ЖРД позволяли получить желаемые характеристики при использовании доступных материалов и технологий. Позже специалисты ведущих стран приступили к разработке новых сортов баллиститных порохов и смесового топлива, результатом чего стало появление РДТТ, пригодных для использования на МБР.

К настоящему времени в стратегических ядерных силах разных стран получили распространение как жидкостные, так и твердотопливные ракеты. Любопытно, что российские МБР комплектуются силовыми установками обоих классов, тогда как Соединенные Штаты еще несколько десятилетий назад отказались от жидкостных двигателей в пользу твердотопливных. Несмотря на такую разницу подходов, обеим странам удалось построить ракетные группировки желаемого облика с требуемыми возможностями.

В области межконтинентальных ракет первыми стали жидкостные двигатели. Такие изделия имеют ряд преимуществ. Жидкое горючее позволяет получить более высокий удельный импульс, а конструкция двигателя допускает изменение тяги сравнительно простыми способами. Большую часть объемов ракеты с ЖРД занимают баки топлива и окислителя, что определенным образом снижает требования к прочности корпуса и упрощает его производство.

Одновременно с этим ЖРД и ракеты, оснащенные ими, не лишены недостатков. В первую очередь, такой двигатель отличается высочайшей сложностью производства и эксплуатации, негативно сказывающейся на стоимости изделия. МБР первых моделей имели недостаток в виде сложности подготовки к запуску. Заправка топлива и окислителя осуществлялась непосредственно перед стартом, а кроме того, в некоторых случаях была связана с некоторыми рисками. Все это негативным образом сказывалось на боевых качествах ракетного комплекса.


Жидкостные ракеты Р-36М в транспортно-пусковых контейнерах. Фото Rbase.new-factoria.ru

Ракетный двигатель твердого топлива и построенная на его основе ракета имеет положительные стороны и преимущества перед жидкостной системой. Главный плюс – меньшая стоимость производства и упрощенная конструкция. Также у РДТТ отсутствуют риски утечек агрессивного топлива, а кроме того, они отличаются возможностью более длительного хранения. На активном участке полета МБР твердотопливный двигатель обеспечивает лучшую динамику разгона, сокращая вероятность успешного перехвата.

Твердотопливный двигатель проигрывает жидкостному по своему удельному импульсу. Поскольку горение заряда твердого топлива почти не поддается контролю, управление тягой двигателя, остановка или повторный запуск требуют особых технических средств, отличающихся сложностью. Корпус РДТТ выполняет функции камеры сгорания и потому должен иметь соответствующую прочность, что предъявляет особые требования к используемым агрегатам, а также негативно сказывается на сложности и стоимости производства.

ЖРД, РДТТ и СЯС

В настоящее время на вооружении стратегических ядерных сил России состоит около десятка МБР разных классов, предназначенных для решения актуальных боевых задач. Ракетные войска стратегического назначения (РВСН) эксплуатируют ракеты пяти типов и ожидают появления еще двух новых комплексов. Такое же количество ракетных комплексов используется на подводных подлодках ВМФ, однако в интересах морской компоненты «ядерной триады» пока не разрабатываются принципиально новые ракеты.

Несмотря на свой солидный возраст, в войсках все еще остаются ракеты УР-100Н УТТХ и Р-36М/М2. Подобные МБР тяжелого класса имеют в своем составе несколько ступеней с собственными жидкостными двигателями. При большой массе (более 100 т у УР-100Н УТТХ и около 200 т у Р-36М/М2) ракеты двух типов несут значительный запас горючего, обеспечивающий отправку тяжелой головной части на дальность не менее 10 тыс. км.

Общий вид ракеты РС-28 "Сармат". Рисунок "Государственный ракетный центр" / makeyev.ru

С конца пятидесятых годов в нашей стране изучалась проблематика применения РДТТ на перспективных МБР. Первые реальные результаты в этой области были получены к началу семидесятых. В последние десятилетия такое направление получило новый толчок, благодаря чему появилось целое семейство твердотопливных ракет, представляющих собой последовательное развитие общих идей и решений на основе современных технологий.

В настоящее время РВСН располагает ракетами РТ-2ПМ «Тополь», РТ-2ПМ2 «Тополь-М» и РС-24 «Ярс». При этом все подобные ракеты эксплуатируются как с шахтными, так и с подвижными грунтовыми пусковыми установками. Ракеты трех типов, созданные на основе общих идей, построены по трехступенчатой схеме и оснащаются твердотопливными двигателями. Выполнив требования заказчика, авторы проектов сумели минимизировать габариты и массу готовых ракет.

Ракеты комплексов РТ-2ПМ, РТ-2ПМ2 и РС-24 имеют длину не более 22,5-23 м при максимальном диаметре менее 2 м. Стартовая масса изделий – порядка 45-50 т. Забрасываемый вес, в зависимости от типа изделия, достигает 1-1,5 т. Ракеты линейки «Тополь» комплектуются моноблочной головной частью, тогда как «Ярс», по известным данным, несет несколько отдельных боевых блоков. Дальность полета – не менее 12 тыс. км.

Нетрудно заметить, что при основных летных характеристиках на уровне более старых жидкостных ракет, твердотопливные «Тополи» и «Ярсы» отличаются меньшими габаритами и стартовым весом. Впрочем, при всем этом они несут меньшую полезную нагрузку.


Подвижный грунтовый комплекс "Тополь". Фото Минобороны РФ

В будущем на вооружение РВСН должны поступит несколько новых ракетных комплексов. Так, проект РС-26 «Рубеж», создававшийся в качестве варианта дальнейшего развития системы «Ярс», вновь предусматривает использование многоступенчатой схемы с РДТТ на всех ступенях. Ранее появлялась информация, согласно которой система «Рубеж» предназначается для замены устаревающих комплексов РТ-2ПМ «Тополь», что и сказалось на основных особенностях ее архитектуры. По основным техническим характеристикам «Рубеж» не должен значительно отличаться от «Тополя», хотя возможно применение иной полезной нагрузки.

Еще одна перспективная разработка – тяжелая МБР типа РС-28 «Сармат». По официальным данным, этот проект предусматривает создание трехступенчатой ракеты с жидкостными двигателями. Сообщалось, что ракета «Сармат» будет иметь длину порядка 30 м при стартовой массе свыше 100 т. Она сможет нести «традиционные» специальные боевые блоки или гиперзвуковую ударную систему нового типа. За счет применения ЖРД с достаточными характеристиками предполагается получить максимальную дальность полета на уровне 15-16 тыс. км.

В распоряжении военно-морского флота имеется несколько типов МБР с разными характеристиками и возможностями. Основу морской компоненты СЯС в настоящее время составляют баллистические ракеты подводных лодок семейства Р-29РМ: собственно Р-29РМ, Р-29РМУ1, Р-29РМУ2 «Синева» и Р-29РМУ2.1 «Лайнер». Кроме того, несколько лет назад в арсеналы попала новейшая ракета Р-30 «Булава». Насколько известно, сейчас российская промышленность разрабатывает несколько проектов модернизации ракет для подлодок, но о создании принципиально новых комплексов речи пока не идет.

В области отечественных МБР для подлодок наблюдаются тенденции, напоминающие о развитии «сухопутных» комплексов. Более старые изделия Р-29РМ и все варианты их модернизации имеют три ступени и оснащаются несколькими жидкостными двигателями. При помощи такой силовой установки ракета Р-29РМ способна доставить на дальность не менее 8300 км четыре или десять боевых блоков разной мощности общей массой 2,8 т. В проекте модернизации Р-29МР2 «Синева» предусматривалось использование новых систем навигации и управления. В зависимости от имеющейся боевой нагрузки, ракета длиной 14,8 м и массой 40,3 т способна лететь на дальность до 11,5 тыс. км.


Загрузка ракеты комплекса "Тополь-М" в шахтную пусковую установку. Фото Минобороны РФ

Более новый проект ракеты для подлодок Р-30 «Булава», наоборот, предусматривал использование твердотопливных двигателей на всех трех ступенях. Среди прочего, это позволило уменьшить длину ракеты до 12,1 м и сократить стартовый вес до 36,8 т. При этом изделие несет боевую нагрузку массой 1,15 т и доставляет ее на дальность до 8-9 тыс. км. Не так давно было объявлено о разработке новой модификации «Булавы», отличающейся иными габаритами и увеличенной массой, за счет чего удастся повысить боевую нагрузку.

Тенденции развития

Хорошо известно, что в последние десятилетия российское командование сделало ставку на разработку перспективных твердотопливных ракет. Результатом этого стало последовательное появление комплексов «Тополь» и «Тополь-М», а затем «Ярс» и «Рубеж», ракеты которых комплектуются РДТТ. ЖРД, в свою очередь, остаются только на сравнительно старых «сухопутных» ракетах, эксплуатация которых уже подходит к концу.

Впрочем, полный отказ от жидкостных МБР пока не планируется. В качестве замены для имеющихся УР-100Н УТТХ и Р-36М/М2 создается новое изделие РС-28 «Сармат» с аналогичной силовой установкой. Таким образом, жидкостные двигатели в обозримом будущем будут использоваться только на ракетах тяжелого класса, тогда как прочие комплексы будут оснащаться твердотопливными системами.

Ситуация с баллистическими ракетами подводных лодок выглядит похоже, но имеет некоторые отличия. В этой сфере так же сохраняется значительное число жидкостных ракет, но единственный новый проект предусматривает применение РДТТ. Дальнейшее развитие события можно предугадать, изучив имеющиеся планы военного ведомства: программа развития подводного флота явно указывает на то, какие ракеты имеют большое будущее, а какие со временем будут списаны.


Самоходная пусковая установка РС-24 "Ярс". Фото Vitalykuzmin.net

Более старые ракеты Р-29РМ и их последние модификации предназначаются для АПЛ проектов 667БДР и 667БДРМ, тогда как Р-30 разрабатывались для использования на новейших ракетоносцах проекта 955. Корабли семейства «667» постепенно вырабатывают свой ресурс и со временем будут списаны ввиду полного морального и физического устаревания. Вместе с ними, соответственно, флоту придется отказаться и от ракет семейства Р-29РМ, которые попросту останутся без носителей.

Первые ракетные подводные крейсеры проекта 955 «Борей» уже приняты в боевой состав ВМФ, а кроме того, продолжается строительство новых подводных лодок. Это означает, что в обозримом будущем флот получит значительную группировку носителей ракет «Булава». Служба «Бореев» будет продолжаться в течение нескольких десятилетий, и поэтому ракеты Р-30 будут оставаться в строю. Возможно создание новых модификаций такого оружия, способных дополнить, а затем и заменить МБР базовой версии. Так или иначе, изделия семейства Р-30 со временем заменят устаревающие ракеты линейки Р-29РМ в роли основы морской составляющей стратегических ядерных сил.

Плюсы и минусы

Разные классы ракетных двигателей, используемые на современных стратегических ракетах, имеют свои плюсы и минусы того или иного рода. Жидкостные и твердотопливные системы превосходят друг друга по одним параметрам, но проигрывают в других. Как следствие, заказчикам и конструкторам приходится выбирать тип силовой установки в соответствии с имеющимися требованиями.

Условный ЖРД отличается от РДТТ более высокими показателями удельного импульса и иными преимуществами, что позволяет нарастить полезную нагрузку. Одновременно с этим соответствующий запас жидкого горючего и окислителя приводит к росту габаритов и массы изделия. Таким образом, жидкостная ракета оказывается оптимальным решением в контексте развертывания большого числа шахтных пусковых установок. На практике это означает, что в настоящее время значительная часть пусковых шахт занята ракетами Р-36М/М2 и УР-100Н УТТХ, а в будущем их заменят перспективные РС-28 «Сармат».

Ракеты типа «Тополь», «Тополь-М» и «Ярс» используются как с шахтными установками, так и в составе подвижных грунтовых комплексов. Последняя возможность обеспечена, в первую очередь, малым стартовым весом ракет. Изделие массой не более 50 т можно разместить на специальном многоосном шасси, чего не сделаешь с существующими или гипотетическими жидкостными ракетами. Новый комплекс РС-26 «Рубеж», рассматриваемый в качестве замены для «Тополя», так же основывается на похожих идеях.


Ракета подводных лодок Р-29РМ. Рисунок "Государственный ракетный центр" / makeyev.ru

Характерная черта ракет с РДТТ в виде сокращения габаритов и массы также имеет значение в контексте вооружений флота. Ракета для подлодки должна иметь минимальные размеры. Соотношение габаритов и летных характеристик ракет Р-29РМ и Р-30 показывает, как именно можно использовать подобные преимущества на практике. Так, в отличие от своих предшественников, новейшие АПЛ проекта 955 не нуждаются в крупной надстройке, прикрывающей верхнюю часть пусковых установок.

Впрочем, сокращение массы и габаритов имеет свою цену. Более легкие твердотопливные ракеты отличаются от других отечественных МБР меньшей боевой нагрузкой. Кроме того, специфика РДТТ приводит к менее высокому весовому совершенству в сравнении с жидкостными ракетами. Однако, по всей видимости, подобные проблемы решаются путем создания более эффективных боевых частей и систем управления.

Несмотря на длительные научные и конструкторские работы, а также массу споров, условное противостояние жидкостных и твердотопливных двигателей пока не закончилось безусловной победой одного из «конкурентов». Наоборот, российские военные и инженеры пришли к взвешенному выводу. Двигатели разных типов используются в тех сферах, где могут показать наилучшие результаты. Таким образом, легкие ракеты для сухопутных мобильных комплексов и подводных лодок получают РДТТ, тогда как тяжелые ракет с шахтным пуском и сейчас, и в будущем должны комплектоваться жидкостными установками.

В существующей ситуации, с учетом имеющихся возможностей и перспектив, подобный подход выглядит наиболее логичным и удачным. Он позволяет на практике получить максимальные результаты при заметном сокращении влияния негативных факторов. Вполне возможно, что такая идеология будет сохраняться и в будущем, в том числе и с применением перспективных технологий. Это означает, что в ближайшем и в отдаленном будущем российские стратегические ядерные силы смогут получать современные межконтинентальные баллистические ракеты с максимально возможными характеристиками и боевыми качествами, прямо влияющими на эффективность сдерживания и безопасность страны.

По материалам сайтов:
http://ria.ru/
http://tass.ru/
http://interfax.ru/
http://flot.com/
http://rbase.new-factoria.ru/
http://kapyar.ru/
http://missiles.ru/
http://makeyev.ru/

Классификация, схемы и типы ЖРД

Тема 2. ЖИДКОСТНЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ

Лекция №3

Вопросы к семинару.

1. Понятие и признаки страховых правоотношений.

2. Отличие страховых правоотношений от смежных отношений.

3. Объект страхового правоотношения.

4. Страховой интерес в страховании.

5. Субъекты страхового правоотношения.

Разработал начальник кафедры гражданского права, доктор юридических наук, профессор М.В.Рыбкина

Не претендуя на полноту и всесторонний учет современных ЖРД, классификация наиболее распространенных типов двигателей представлена на рисунке (см. Рис. 2.12.).

В основу предложенной схемы положен принцип деления всех схемно-технических решений на две крупные группы, отличающихся принципами обеспечения подачи компонентов топлива в камеру сгорания ЖРД. Это двигатели с насосной системой подачи и двигатели с вытеснительной системой подачи компонентов.

В первую группу входят, в основном, маршевые двигатели ракет-носителей, межконтинентальных баллистических ракет, многоразовых космических систем. Применение второй группы ЖРД, как правило, ограничено двигательными установками космических аппаратов, крупногабаритных модулей пилотируемых орбитальных комплексов и транспортных кораблей, а также двигательными установками средств межорбитальной транспортировки.

Рис. 2.12. Общая классификация ЖРД

Важным классификационным признаком ЖРД является также способ утилизации рабочего тела (продуктов сгорания топлива), получаемого на выходе из турбонасосного агрегата двигателя. По этому критерию, все двигатели принципиально делятся на двигатели «открытой» схемы и двигатели «закрытой» схемы. В ЖРД «открытой» схемы, генераторный газ после срабатывания на турбине сбрасывается либо без дополнительного использования, либо утилизируется в дополнительных устройствах. В ЖРД «закрытой» схемы, совершивший на турбине генераторный газ поступает в камеру сгорания и дожигается, за счет дополнительно поступающего одного или двух поступающих в камеру сгорания компонентов.

В зависимости от типа газогенератора ЖРД могут быть классифицированы на двигатели с газогенераторами на основных или вспомогательных компонентах топлива, а также иметь безгенераторную схему, когда необходимое для привода ТНА рабочее тело получают путем газификации одного из компонентов топлива в охлаждающем тракте камеры.

Для повышения эффективности и коэффициента полезного действия турбонасосного агрегата иногда применяются схемы с раздельными ТНА по линии горючего и окислителя, а также схемы, в которых турбонасосный агрегат содержит в своем составе и бустерные (подкачивающие) насосы, необходимые для создания необходимого давления на входе в двигатель, особенно при его запуске.



В зависимости от типа газогенератора, ЖРД могут быть классифицированы на двигатели с газогенераторами на основных или вспомогательных компонентах топлива, а также иметь безгенераторную схему, когда необходимое для привода ТНА рабочее тело получают путем газификации одного из компонентов топлива в охлаждающем тракте камеры.

Для повышения эффективности и коэффициента полезного действия турбонасосного агрегата иногда применяются схемы с раздельными ТНА горючего и окислителя, а также схемы, в которых турбонасосный агрегат содержит в своем составе и бустерные (подкачивающие) насосы, необходимые для создания необходимого давления на входе в двигатель, особенно при его запуске.

Сравнительно простые схемы характерны для ЖРД с вытеснительной системой подачи топлива.

В схеме с вытеснительной подачей топлива (см. рис. 2.13.), в баки с окислителем и горючим поступает газ из баллона со сжатым газом (например, с азотом), при этом его давление в баках компонентов топлива поддерживается постоянным с помощью редуктора. Давление в газовой подушке топливных баков обеспечивает вытеснение жидкофазных компонентов в камеру сгорания ЖРД. При этом совершенно очевидно, что давление в камере не может быть выше давления в баках. Отсечные клапана служат для обеспечения запуска и останова двигателя. Несомненным преимуществом представленной выше схемы является ее простота и, как следствие, надежность. Однако, при вытеснительной системе баллон со сжатым газом тяжел и существенно утяжеляются топливные баки. В общем случае:

(2.18.)

Давление газа в топливных баках;

Давление в камере сгорания ЖРД;

Потери давления в гидравлических трактах и элементах автоматики между баками и камерой двигателя.

Давление в газовой подушке топливных баков обеспечивает вытеснение жидких компонентов в камеру сгорания ЖРД. При этом совершенно очевидно, что давление в камере не может быть выше давления в баках. Отсечные клапана служат для обеспечения запуска и останова двигателя. Несомненным преимуществом представленной выше схемы является ее простота и надежность. Так как с повышением давления в камере, повышается экономичность двигателя, стремление повысить его, для данной схемы ЖРД сопряжено с ростом массы всех элементов системы подачи и, прежде всего, топливных баков. Подобные недостатки относятся и к вытеснительной системе подачи топлива с двухкомпонентными ЖГГ. Однако расхода газа, используемого для наддува баков горючего и окислителя, требуется меньше. В таком варианте схемы, поддув осуществляется продуктами сгорания, получаемыми в ЖГГ, а работоспособность «подогретого» газа значительно выше чем «холодного».

Эффект влияния на массовые характеристики двигательной установки с ЖРД может быть наглядно проиллюстрирован на следующем примере. Если бы была осуществлена замена двигательной установки второй ступени ракеты-носителя «Сатурн – 5» на установку с вытеснительной системой подачи при том же давлении в камере сгорания ЖРД, то прирост массы такой двигательной установки оказался бы равным массе космического корабля «Аполлон», что сделало бы невозможным реализацию лунной программы.

Для варианта вытеснительной схемы (см. Рис. 2.14.) можно ожидать некоторое снижение потерь, так как вытеснение компонентов будет осуществляться подогретыми продуктами сгорания, вырабатываемыми в ЖГГ.

Из пояснений следует, почему вытеснительная система подачи с баллонной системой подачи применяется исключительно в двигателях малой тяги с давлением в камере сгорания ЖРД не более 10-12 · 10 5 Па.

Практическое применение ЖРД малой тяги (ЖРДМТ) находят при создании объединенных двигательных установок (ОДУ) для искусственных спутников земли (ИСЗ), космических аппаратов (КА) и космических кораблей (КК). Находясь на орбите, когда за бортом летательного аппарата давление близко к нулю, удельный импульс может иметь достаточно высокое значение, даже при невысоком значении давления в камере. Следует вспомнить, о повышении удельного импульса от отношения давления в камере сгорания к давлению на срезе сопла (см. Рис. 2.10.).

Схемных решений ОДУ с использованием ЖРДМТ может быть рассмотрено достаточно много. В первую очередь, различие вариантов схем будут зависеть от требований, определяемых назначением ЛА. Это могут быть двигатели, как на однокомпонентных, так и на двухкомпонентных топливах. Схемы будут отличаться по принципам регулирования и стабилизации тяги. На определение схемного решения могут влиять и иные факторы. Однако, во всех вариантах схем, давление в аккумуляторах газа должно быть выше давлений в камерах, что определяет особенности вытеснительной системы подачи компонентов.

Представление всех или, хотя бы, большинства возможных схем двигательных установок с вытеснительными системами подачи, в данном учебном пособии, не входит в планы авторов. Поэтому, для иллюстрации возможных схемных вариантов, в качестве примера, приводится схема объединенной двигательной установки (ОДУ) для искусственного спутника земли (ИСЗ) на двух компонентном топливе (см. Рис. 2.15.).

Рис. 2.15. Схема ОДУ с двухкомпонентным ЖРДМТ для ИС.

1. Редуктор давления, 2. ЖРД маневрирования (Каждый с тягой 22 Н),

3. Апогейный ЖРД (тяга 490 Н)

Конструкции и принципиальные особенности функционирования ЖРДМТ весьма разнообразны. К числу наиболее важных проблем по созданию ЖРДМТ, можно отнести обеспечение работоспособности камер сгорания. Особенно, если учесть, что требуемые для ЖРДМТ ресурсы, значительно, превышают ресурсы для камер обычных ЖРД.

В перечень подобных можно включить: осуществление запуска, организацию рабочего процесса, выбор системы противодействия температурному воздействию на стенки камер и ряд других. Большая часть трудно решаемых проблем, связана, прежде всего, с чрезвычайно низкими значениями рабочих расходов компонентов. Так для некоторых камер расходы окислителя м горючего не превышают 0,5 и 0,3 г/с соответственно. Подобное обстоятельство, например, определяет невозможность использования регенеративного охлаждения стенок (как наиболее эффективного), а выбирать для изготовления стенок камер тугоплавкие металлы, применять термостойкие теплозащитные покрытия, значительно ниже оболочек

Для двигательных установок, одна из схем которых приведена на рисунке 2.15., используемых в составе транспортного космического корабля или иного ЛА и находящихся длительное время в полете, должны осуществляться дозаправки топливных баков. Варианты систем дозаправки, представлены на рисунке (см. Рис. 2.16.).

Рис. 2.16. Схемы топливных баков дозаправляемых в полете ЛА.

1. Стенки бака; 2. Патрубок наддува; 3. Поршень; 4. Заборник топлива; 5. Сильфон;

6. Эластичный мешок; 7. Штанга с отверстиями для наддува; 8. Пластичная диафрагма; 9. Пластичные смачиваемые перегородки; 10. Центральная труба для забора топлива.

А - с поршнем; Б - с сильфонным вытеснительным устройством (топливо вне сильфона); В - с сильфонным вытеснительным устройством (топливо внутри сильфона); Г- с вытеснительным мешком (топливо вне мешка); Д - с вытеснительным мешком (топливо внутри мешка); Е - с пластичной диафрагмой; Ж - с капиллярным заборным устройством.

С более полными сведениями по системам дозаправки, можно ознакомиться в учебном пособии, которое упоминается в списке литературы.

Для реализации ЖРД средних, больших и сверх больших тяг, требуется создание двигателей, с возможно большим повышением давлений в камере сгорания. В подобных вариантах двигателей используются схемы с турбонасосной системой подачи компонентов топлива.

На рисунке (см. Рис. 2.17.) представлена структурная схема ЖРД с насосной системой подачи компонентов. Характерной особенностью рассматриваемой схемы следует считать, что отработанный на турбине газ просто сбрасывается в окружающую атмосферу. Следует отметить, что продукты сгорания после турбины обладают еще значительной работоспособностью и не использование их, отрицательно сказываеся на эффективности двигателя. Тем не менее, подобные схемы могут реализовываться.

Рис. 2.17. Пневмогидравлическая схема ЖРД, с турбонасосной подачей компонентов в камеру сгорания.

Компонент унитарного ракетного топлива (например, перекись водорода – Н 2 О 2), из бака, подаются в жидкостный газогенератор. Газогенератор – агрегат, предназначенный для выработки высокотемпературного генераторного газа, используемого для привода турбины ТНА. Турбина обеспечивает крутящим моментом насосы горючего и окислителя. Основные компоненты топлива подаются насосами в камеру двигателя, причем горючее, как правило, используется для охлаждения камеры, для чего оно подается в зазор между ее стенками, обычно называемую, «рубашку» охлаждения. Окислитель подается непосредственно в форсуночную головку камеры, где смешивается с подогретым в охлаждающем тракте горючим. Процесс взаимодействия компонентов топлива происходит в камере сгорания. Образующиеся высокотемпературные продукты сгорания, проходят через критическое сечение камеры и расширяются в сопле до сверхзвуковых скоростей. Истечение продуктов сгорания является конечной фазой работы ЖРД и формирует тягу ракетного двигателя.

Схемы подобного типа, которые носят названия, «открытые схемы», могут быть более эффективными, если после срабатывания на турбине, генераторный газ может сбрасываться через дополнительные устройства, обеспечивающие утилизацию энергию сбрасываемого газа...

В общем случае величина тяги ЖРД «открытой» схемы, может складываться из величины равной сумме тяг, производимых основной камерой и дополнительным затурбинным устройством. Подобный же эффект может быть получен, при обеспечении отвода генераторного газа, во вспомогательное сопло; внедрения в закритеческую часть основного сопла, в разных вариантах конструктивного оформления основного сопла.

На рисунке (см. рис. 2.18) представлены схемы устройств, в которых генераторный газ после реализации части своей энергии на турбине, используется для создания дополнительной тяги.

Рис.2.18 Схемы устройств, утилизирующих затурбинный газ

В любом из представленных вариантов, дополнительная тяга, реализуемая в устройстве, должна быть учтена.

Т.е. имеет место соотношение:

где: - суммарная тяга ЖРД «открытой» схемы;

Тяга, производимая основной камерой ЖРД;

Тяга, производимая в вспомогательных устройствах.

Используя ранее приведенные зависимости для определения удельного импульса (см. уравнения 2.11, 2.12. и 2.13), преобразуем выражение 2.19. к виду 2.20.

(2.20.)

где: - эффективный удельный импульс ЖРД «открытой» схемы;

Удельные импульсы, обеспечиваемые основной камерой и вспомогательной устройствами, соответственно;

Массовый расход топлива в газогенераторе и суммарный массовый расход топлива в ЖРД.

Анализ зависимости 2.20. показывает, что величина эффективного удельного импульса тем больше, чем меньше доля топлива расходуемого через газогенератор и чем более эффективно утилизируется генераторный газ после срабатывания на турбине. Существует вполне определенная зависимость, характеризующая влияние давления в камере ЖРД «открытой» схемы на величину удельного импульса. В отличие от монотонного возрастания величины . В рассмотренном выше общем случае, при увеличении давления в камерах ЖРД, работающих по схеме без дожигания генераторного газа, наблюдается явно выраженная область, отвечающая оптимальному значению (см. Рис.2.19.).

Рис.2.19. Зависимость удельного импульса от давления в камере

двигателя «открытой» схемы

Появление экстремума в зависимости объясняется необходимым увеличением расхода топлива через газогенератор при росте давления в камере сгорании. Увеличение расхода требуется для повышения мощности турбины, чтобы обеспечить возросшую потребность насосов, в большем крутящем моменте. Подобное положение приводит к возрастанию доли неэффективно используемого топлива и, как следствие, к снижению удельного импульса ЖРД.

Допустимо предусмотреть сброс газогенераторного газа осуществлять через специальные поворотные сопла, используемые для управления полетом ракеты

В целях максимального использования возможностей ракетного топлива усилиями российских ученых и инженеров была разработана схема организации рабочего процесса ЖРД, предусматривающая дожигание генераторного газа в камере сгорания после его срабатывания на турбине ТНА, так называемые, «схемы с дожиганием генераторного газа» (см. рис. 2.20.).

Рис. 2.20. Структурные схемы ЖРД с дожиганием генераторного газа

1. и 2. Баки с горючим и окислителем, 3. ЖГГ, 4. и 5. насосы горючего и окислителя, 7., 8. и 9. клапаны, 10. камера сгорания.

Основное особенность «закрытой» схемы, выполненной по варианту Рис. 2.20, заключается в следующем. Весь окислитель, необходимый для работы КС подается в газогенератор. Туда же подается минимально необходимое количество горючего. Соотношение компонентов топлива, подаваемых в газогенератор, диктуется исключительно необходимостью получения газа, с температурой, приемлемой для обеспечения термомеханических нагрузок турбины. После срабатывания генераторного газа на турбине, имеющего в рассматриваемом случае избыток окислительного компонента, газ подается в КС. Туда же поступает дополнительное количество горючего, необходимого для поддержания оптимального соотношения компонентов топлива. В этом варианте, ЖРД работает по схеме «газ (окислитель) – жидкость (горючее)». Возможен и вариант организации рабочего процесса, когда в газогенератор подается избыточное количество горючего при недостатке окислителя. В первом случае говорят об окислительном газогенераторе, во втором – восстановительном.

И тот, и другой способы имеют свои преимущества и недостатки. В случае восстановительного газогенератора существенно легче решаются вопросы обеспечения термической устойчивости, поскольку при высоких температурах рабочего процесса в газогенераторе гораздо легче защитить конструкционные материалы (в основном, металлы и их сплавы) от возгорания при наличии восстановительной среды. Вместе с тем, избыток горючего при недостаточном количестве окислителя чреват целым рядом негативных последствий, связанных с неполнотой сгорания горючего, что приводит в случае углеродсодержащих компонентов к выпадению твердой фазы углерода и, как следствие, к эрозионному износу лопаток турбины и других элементов ТНА.

Окислительная схема газогенерации лишена этих недостатков, но ей присущи свои особенности. Они заключаются в необходимости применения тугоплавких, устойчивых к возгоранию в окислительной среде конструкционных материалов, что приводит к повышению стоимости двигателей, потенциальному снижению их устойчивости при воздействии микрочастиц в окислительном газовом потоке, поступающем на лопатки турбины, что затрудняет создание высоконадежных ЖРД.

На практике восстановительная схема газогенерации применяется, чаще всего, в кислородно–водородных ЖРД, где горючее (жидкий водород) не содержит углерода и, следовательно, принципиально отсутствует опасность сажеобразования. В перспективе рассматривается возможность использования в качестве ракетного горючего первого члена гомологического ряда предельных углеводородов – метана (СН 4), содержание углерода в котором минимально, что делает принципиально возможным эффективное его использование в газогенераторах восстановительной схемы.

Представленная выше схема ЖРД осуществлена по схеме «газ–жидкость». По этому варианту схемы, предусматривается организация рабочего процесса с дожиганием генераторного газа.

В другом варианте, дожигание генераторного газа может быть построено по схеме «газ – газ». Основное отличие этой схемы состоит в наличии двух газогенераторов. Один газогенератор работает по окислительной схеме, второй – восстановительной. Предпочтительно, для восстановительного газогенератора использовать водород, или углеводородное горючее с минимальным массовым содержанием углерода (керосин и т.п.), а в качестве окислителя – жидкий кислород. Так введение жидкого водорода в состав ракетного горючего, позволяет в значительной степени снизить выделение конденсированной фазы углерода (сажи), тем самым обеспечить возможность более надежной работы восстановительного газогенератора.

Продукты газогенерации поступают на турбины окислительного и восстановительного газа, а затем, после прохождения турбин, в камеру сгорания, где и происходит их окончательное взаимодействие, с требуемым соотношением компонентов (см. Рис. 2.21.).

Рис. 2.21. Пневмогидравлическая схема ЖРД с дожиганием генераторных газов.

1. и 2. Баки с горючим и окислителем, 3. и 4. ЖГГ газа с избытком горючего и ЖГГ газа с избытком окислителя, 5. и 6. Насосы горючего и окислителя, 7. и 8. Турбины газа горючего и газа окислительного, 9. и 10. Клапаны, 11. Камера сгорания.

Подобная схема может быть в несколько ином исполнении, когда два газогенератора. ЖГГ с избытком горючего обеспечивает наддув бака горючего. Второй газогенератор вырабатывает окислительный высокотемпературный газ, одна часть которого поступает на турбину и после турбины в основную камеру сгорания. Вторая - меньшая часть в смесителе дополняется дополнительным количеством окислителя и используется для надува окислительного бака.

Для водородно-кислородного двигателя, обычно используется безгазогенераторная схема (см. рис. 2.22.).

Рис.2. 22. Безгазогенераторная схема ЖРД

1. Камера сгорания, 2. регулятор тяги, 3. Насос жидкого водорода. 4. Насос жидкого кислорода, 5. Редуктор оборотов, 6. турбина, 7. 8. и 9.пуско-отсечные клапаны, 10. клапан системы зажигания..

В пневмогидравлической безгазогенераторной схеме работа ЖРД предусматривается следующий порядок выполнение функционирования. Компоненты из ба­ков через входные клапаны поступают на вход насосов. ТНА двига­теля имеет двухвальную схему с параллельными валами и шестеренча­тым редуктором. Это важная особенность данного ТНА. Центробежный насос водорода установлен на одном валу с турбиной, имеет две ступени и осевой вход. Первая ступень насоса шнекоцентробежная. Шнекоцентробежпый насоскислорода выполнен одноступенчатым,. Турбина - осевая двухступенчатая, реактивная.

Жидкий кислород через блок клапанов, с электромеханическим регулятором соотношения компонентов, от насоса поступает в полость смесительной головки. В полете, посигналам системы опорожнения баков, соотношение компонентов может изменяться в пределах ± 10 %. Водород из насоса по трубопроводу подводится к входному коллектору охлажда­ющего тракта камеры.

Жидкий водород из насоса поступает в кол­лектор, расположенный в области критического сечения сопла. Из кол­лектора, по части трубок, водород направляется к срезу сопла, затем, по другой части трубок, движется к коллектору возле головки. Из этого коллектора газообразный водород, нагретый в охлаждающем тракте до температуры 200К, от регулятора тяги направляет­ся на турбину. Регулятор тяги работает на принципе перепуска части водо­рода на выход из турбины. Из турбины отработанный водород через пуско-отсечной клапан, поступает по газоводу в смесительную головку. Все основные клапаны управляются газообразным гелием с помощью управляющих клапанов.

В схеме показаны еще клапаны, которые обеспечивают работу системы захолаживания двигателя перед запуском. Подобная операция необходима для нормального осуществления запуска двигателя использующего криогенные компоненты. что необходимо для гидравлически систем. Наддув баков осуществляется газообразным гелием, запас которого находится в специальном баллоне.

Выше были рассмотрены ряд схем ЖРД, в которых для подачи компонентов в КС используются ТНА. При малых давлениях во входных патрубках могут возникать срывные режимы, характеризующиеся началом кавитации в межлопаточных полостях насосов. Во всех представленных пневмогидравлических схемах ЖРД оснащенных ТНА, в баки с компонентами от баллонов через редукторы подается газ, осуществляющий их наддув. В этом случае можно было бы рассчитывать на получение требуемого давления на входе в насосы. В тоже время давление в баках, необходимое для нормальной работы шнекоцентробежного насоса, часто недопустимо велико, что приводит к заметному уве­личению толщины стенок и массы баков. Отмеченного недостатка можно избежать, если на выходе из баков устанавливать дополнительного подкачивающего (бустерного) насосного агрегата (БНА). Установка БНА, обес­печивающего работу основного насоса ТНА, позволяет суще­ственно снизить величину наддува баков и, следовательно, их массу. Поэтому, конструкция современного ТНА немыслима без последовательного использования различных насосов скомпонованных по многоступенчатой схеме. Роль бустеров может осуществлять лопаточный осевой (шнек) или струйный насос (эжектор).

Подкачивающие бустерные насосные агрегаты (БНА), которые обычно называют преднасосы, располагают в непос­редственной близости от бака с компонентом, что исключает гидравлические потери при подаче компонента от бака до входа в насос БНА. На рисунке (см. рис. 2.30).

Рис. 2.30. Схемы бустерныых устройств

Вариант а). 1. Бак с компонентом, 2. центробежный преднасос, 3. жикостная турбина преднасосного агрегата, 4. турбина основного ТНА, 5. насос ТНА.

Вариант б). 1. Бак с компонентом, 2. преднасос, 3. газовая турбина преднасосного агрегата, 4. насос основного ТНА.

Вариант в). 1. Бак с компонентом, 2. струйный преднасос (эжектор), 3. сопло эжектора, 4. насосос основного ТНА., 5. Магистраль подачи компонента к соплу эжектора.

В схеме варианта «а», гидравлическая турбина БНА приводится в действие жидкостью высокого давления, отбираемой от насоса ТНА. После сра­батывания на турбине жидкость возвращается в напорную магистраль. В схеме варианта «б», газовая турбина работает на газе основного ЖГГ, а в варианте «в», струйный преднасос–эжектор, также как и варианте схемы «а», запитывается компонентом от насоса основного ТНА.

Как это следует из приведенного краткого анализа эффективности возможных вариантов схем ЖРД, повышение давления в камере не во всех случаях, приводит к увеличению удельного импульса. Разобранные особенности построения схем ЖРД, в большей степени относятся к схемам двигателей больших и сверхбольших тяг, а также, в определенной степени к двигателям средних тяг. На рисунке (см. Рис 2.31.) приводится качественная зависимость удельных импульсов камеры и ЖРД, выполненных по вытеснительной схеме, по «открытой» схеме и по «закрытым» схемам различных вариантов.

Рис. 2.31. Зависимость удельного импульса от давления в камере

Из анализа графика следует, что в двигателях выполняемых о схеме жидкость- жидкость, с увеличением давления удельный импульс камеры монотонно возрастает. Однако, в дальнейшем, из-за возрастания расхода газа на привод ТНА (см. Рис. 2.26.), удельный импульс двигателя увеличивается лишь до определенного предела. Увеличение удельных импульсов двигателей, построенных по замкнутым схемам, с ростом давления в камере увеличиваются, хотя инее очень существенно.

При выборе варианта ЖРД для вновь проектируемого ЛА, кроме использования данных полученных из анализа графика представленного на рисунке 2.18, следует рассмотреть зависимость, называемую высотной характеристикой (Рис. 2.32.).

Рис. 2.32. Высотная характеристика.

На рисунке. 2.32. представлены изменения основных параметров двигателя с изменением противодавления. Как видно из рисунка, протекание высотной характе­ристики ЖРД с изменением дав­ления окружающейсреды мож­но разделить на два участка: участок работы сопла без скач­ка уплотнения I и участок ра­боты сопла со скачком уплотне­ния П.

На участке c бесскачковым режимом работы сопла, тяга и удельная тяга линейно уменьшаются с ростом давления окружающей среды. В этом случае рабочий процесс в камере и ее сопле автономен от давления окружающей среды. При некотором давлении р к в сопло камеры входит скачок уплотнения - линейность изменения тяги и удельной тяги нарушается. Характер изменения тяги и удельной тяги на режиме работы сопла со скачком уплотне­ния определяется закономерностью движения скачка уплотнения в глубь сопла и восстановлением давления за скачком уплот­нения. На рисунке 2.33. показан пунктирными линиями характер из­менения основных параметров ЖРД, для случая, если бы скачок уп­лотнения не входил в сопло и при всех давлениях сопле проис­ходило обычное расширение газа. С момента же вхождения скачка уплотне­ния в сопло, давление за скачком увеличивается по мере проникновения скачка уплотнения в глубь сопла. По­добный режим работы наблюдается у ЖРД первой ступени межкон­тинентальных ракет, давление на срезе сопла которых выбирается достаточно малым из условия получения средней максимальной удельной тяги на активном участке траектории движения ракеты. или у ракет, У по­добного типа ракет параметры двигателя выбираются из условия получения средней максимальной удельной тяги на воздушном участке траектории движения. Поэтому для этих ракет давление на срезе сопла полу­чается довольно низким и атмосферного давления до­статочно, чтобы скачок уплотнения вошел в глубь сопла. На рисунке видно, что в указанных условиях ре­жим работы сопла со скачком уплотнения улучшает характери­стики ЖРД.

Для варианта ракеты, дл которой необходимо чтобы тяга в полете изменялась, ЖРД должен быть выполнен с дроссельной характеристикой (см.Рис.2.33.).

Рис. 2.33. Дроссельная характеристика ЖРД.

Как это следует из рисунка, для изменения величины тягового усилия, требуется изменение расходов компонентов. Однако следует помнить, что изменение расхода обеспечивается коррекцией перепада на форсунках в соответствии со следующим выражением.

, (2.21.)

где G - расход компонента через форсунку,

Коэффициент расхода форсунки,

F ф – площадь выходного сечения сопла форсунки,

Плотность компонента,

Перепад давления на форсунке.

Кроме представленных вариантов, иным направлением схемного совершенствования, являются трехкомпонентные ЖРД. В ЖРД подобного типа одновременно используется в качестве горючего какое либо углеводородное (например, керосин) и жидкий водород, а в качестве окислителя – жидкий кислород. Трехкомпонентные двигатели позволяют также в полной мере реализовать возможность эффективного использования различных ракетных топлив на борту одного и того же летательного аппарата. Баллистические и массовые расчеты эффективности применения различных топлив в двигательных установках ракет – носителей, баллистических ракет, многоразовых космических систем во многом определяется характеристиками применяемого ракетного топлива. Как уже показывалось ранее, топлива определяют значение удельного импульса ЖРД, который, особенно важен для двигателей верхних ступеней РН, в то время как первые ступени могут быть оснащены ЖРД с не столь высоким значением , но при этом плотность топлива должна быть максимальной.

Трехкомпонентные двигатели позволяют обеспечить работу первых ступеней при минимальном содержании водорода в ракетном горючем. Т.е., указывается на целесообразность применения топлива с большей плотностью. На последующих же этапах полета ракеты, водород, как горючее более энергоемкое и меньшей плотности, является более предпочтительным, так как его использование приведет к повышению удельного импульса ЖРД, а, следовательно, и эффективности всего летательного аппарата.

ЖРД может обеспечить требуемые параметры и характеристики, при условии включения в состав пневмогидравлической схемы (ПГС) агрегатов автоматики и управления двигателем. К числу наиболее важных функций, осуществляемых агрегатами ПГС можно отнести:

· стабилизацию соотношения компонентов подаваемых в камеру сгорания;

· поддержание требуемого уровня или регулирование тяги;

· обеспечение контроля и управления за работой двигателя и его основных агрегатов (камеры сгорания, ТНА, газогенератора и, возможно, некоторых других), определяющих его общую работоспособность.

Для конкретных типов двигателей, представленный перечень может быть расширен.

Как уже не раз отмечалось, для настоящего учебного пособия, соблюдая условия краткости представляемых материалов, изложить возможные варианты ПГС с описаниями схем, входящих в состав двигателей агрегатов автоматики и регулирования, нет возможности. Можно лишь указать в списке литературных источников, перечнень специальных учебных пособий по данному вопросу.

Однако схемы и конструктивные особенности основных агрегатов будут представлены.

Выделяя словом «основные» агрегаты, авторы имеют ввиду агрегаты, обеспечивающие наиболее важные функциональные параметры и характеристики ЖРД. К таковым можно отнести камеры сгорания, турбонасосные агрегаты, газогенераторы. Эти агрегаты определят тип ЖРД. Работы по их созданию требуют наибольших временных и финансовых затрат, В тоже время необходимо подчеркнуть, что степень важности в определении работоспособности ЖРД, а порой и надежности, не упомянутых в числе основных агрегаты (клапаны, регуляторы, и др.), требуют не меньшего внимания к их конструированию и отработке.

2.5.1. Камеры сгорания ЖРД

Камера сгорания разрабатывается в определенной последовательности. Первоначально, если в техническом задании специально не оговариваются, выбираются компоненты и оптимальное давление в КС Конструктивное оформление КС определяется после выполнения газодинамических расчетов. По результатам этих расчетов, устанавливаются геометрические размеры и газодинамический профиль КС (см. Рис. 2.34.).

Рис. 2.34. Газодинамический профиль камеры сгорания.

КС ЖРД испытывает чрезвычайно большие тепловые нагрузки. Для двигателей средних, больших и очень больших тяг, практически для всех типов компонентов, КС выполняется с наружным охлаждением. Для камер малых тяг, вопросы температурной стойкости, решаются с учетом ресурса, геометрически обводов камеры, тягового усилия и других специфичных особенностей каждого варианта камеры. Основные конструктивные элементы КС, выполненной с внешним охлаждением, представлены на рисунке (см. Рис.2.35.)

Рис. 2.35. Камера сгорания со связанными оболочками

1. Корпус камеры, 2. Смесительная головка, 3.Цилиндрическая часть камеры, 4.Сопло, 5. «Рубашка» камеры, 6. Силовой кронштейн.

а. Узел пояса завесы, б. Узел подвода охладителя (горючего), в. Кронштейны крепления камеры

На рисунке 2.35., ввод охлаждающего компонента в рубашку камеры осуществляется в сечении внешнего диаметра сопла. Это не единственное решение. Проектант обычно выбирает вариант установки коллектора ввода компонента, в зависимости от ряда причин (степень расширения сопла, стремления снизить сопротивление по тракту, прочности и т.п.).

На рисунке (см. рис. 2.36) приводятся варианты расположения сечений ввода.

Рис. 2.36. Варианты расположения сечений ввода охлаждающего компонента в межоболочечный зазор «рубашки» камеры.

а - на выходном сечении сопла. б .- на выходном сечении и в среднем сечении сопла, в – в среднее сечение сопла

В современных двигателях большой тяги, для повышения термической стойкости камеры применяется целый ряд конструктивных мер, направленных на снижение температуры наиболее теплонапряженных элементов камеры сгорания.

К числу таких мер следует отнести:

· организацию регенеративного охлаждения за счет прокачки относительно холодных компонентов топлива через «рубашку» охлаждения;

· использование, так называемых, «завес охлаждения», представляющих собой специальные зоны теплонапряженных областей камеры, снабженные устройствами для подвода дополнительного количества одного из компонентов топлива (как правило, горючего) в целях снижения локальных тепловых потоков;

· применение специальных мер в наиболее нагруженном в тепловом отношении - критическом сечении камеры (уменьшение межоболочечного зазора, вставок тугоплавких материалов в критической части сопла).

Для организации внешнего охлаждения, величина зазора регламентируется специальными проставками – связями. Они же и обеспечивают прочность камеры и устойчивость внутренней оболочки камеры, когда давление охлаждающего компонента в зазоре «рубашки» превышает давление в камере. На рисунке (см. Рис. 2.30.) приводятся виды проставок используемых в современных конструкциях КС. Проставки, внешняя и внутренняя оболочки соединяются пайкой, состав припоя стоек в компоненте и сохраняет при нагревании стенок прочностные характеристики.

Рис. 2.37. Типы связей оболочек КС.

а . гофрированная проставка, б . оребрение внутренней оболочки, в . трубчатая камера.

Существует и еще одно важное обстоятельство повышения работоспособности КС, обеспечиваемое за счет введения в конструкцию КС связей. Корпус камеры ЖРД испытывает значительное силовое нагружение. Процесс сгорания может проходить при давлениях продуктов в нескольких десятков МПа. При этом давление охлаждающего компонента в межоболочечном зазоре всегда должно быть больше чем давление в камере. В противном случае компонент не сможет поступить в КС. Следовательно, внутренняя оболочка камеры, находясь под внешним перепадом давлений, равным разнице давления подачи и давления в камере, может сложиться – потерять устойчивость. И если, при идущем процессе в камере, она прогрета, то механические характеристики материала оболочки, имеют пониженное значение. На первых образцах двигателей, оболочки внешняя и внутренняя, работали независимо одна от другой (см. Рис. 2.38.), что исключало возможность повышения давления в КС.

Рис. 2.38. Камера сгорания двигателя РД-1100

1. Форсуночный блок с системой зажигания, 2. независимо работающие (без связей) оболочки камеры. 3 сопловой блок.

В современных ЖРД, как это было отмечен ранее, КС выполнятся со связанными оболочками. При введении охлаждающего компонента в «межрубашечный» зазор на выходном срезе сопла (наиболее часто исполняемая схема) (см. Рис. 2.39.) определяется наибольший перепад давлений, действующий на внутреннюю оболочку. В этом сечении давление компонента максимальное, а давление в камере близкое к нулю. Оценка прочностной надежности оболочек камеры (прочности оболочек, устойчивости внутренней оболочки, прочности связей и других позиций) должна производиться с учетом этого обстоятельства.

Рис. 2.39. Распределение нагрузок по длине камеры

На графике использованы следующие обозначения: р г - давление в камере, р ж – давление охлаждающего компонента в «межоболочечном» зазоре, t г – температура газа в камере, t ср вн.о. – средняя, по толщине внутренней оболочки, температура, - перепад давлений на форсунке, m охл. – массовый расход охлаждающего компонента, L – длина камеры..

Следует отметить, что варианты связей, приведенные в настоящем пособии, как наиболее часто используемые в современных конструкциях КС, проверены большим числом опытов и хорошо зарекомендовали себя, при эксплуатации многочисленных образцов ЖДД различных размерностей.

Другим средством, способствующим снижению теплового воздействия на внутреннюю стенку камеры, является введение в конструкцию узлов завесы. На рисунке (см. рис. 2.40) изображены варианты конструкторских решений узлов завес, через которые вводится горючие обеспечивающее создание газо-жидкостной пленки на внутренней поверхности оболочки «рубашки».

Рис.2.40. Варианты узлов завесы камеры.

ас отверстиями, бс щелевым зазором

Для камер сгорания ЖРДМТ характерны два тип режимов работы (см. Рис. 3.7.). Для камеры с установившимся режимом работы, система охлаждения внутренней стенки может быть избрана по принципу камер только что разобранных. Вариант ЖРДМТ, работающий по импульсному режиму, может использовать камеру с «емкостной системой» защиты стенки камеры. Этот вариант предусматривает исполнение единой оболочки (без «рубашки охлаждения») увеличенной толщины и с дополнительными кольцами жесткости (см. Рис. 2.41.).

Рис. 2.41. Камера сгорания ЖРД малой тяги.

1. Блок клапанов горючего, 2. Камера сгорания, 3. Узел крепления соплового насадка, 4. Сопловой насадок, 5. Воспламенитель, 6. Блок клапанов горючего.

Подобное решение допустимо, так как в перерывах между функционированием камеры, стенка «отдыхает» от воздействия продуктов сгорания и прогрев ее снижается.

Особо важным узлом является головка КС. На днищах головки располагаются форсунки, через которые поступают компоненты в камеру. Типы форсунок значительно различаются по конструктивному оформлению. На рисунке (см. рис. 2.42). приведены некоторые варранты струйных, центробежных и двухкомпонентных форсунок, которые используются в двигателях схемы «жидкость-жидкость».

Рис. 2.42. Варианты жидкостных форсунок.

1. Переднее днище, 2. Среднее днище, 3. Двухкомпонентная струйно-струйная форсунка, 4. Однокомпонентная форсунка с завихрителем, 5. Однокомпонентная струйно-центробежная форсунка, 6. Двухкомпонентная центробежная форсунка с тангенциальными отверстиями, 7. Распорная втулка.

Для двигателей, выполняемых по схемам с дожиганием генераторного газа, головки камер оснащаются газожидкостными форсунками (Рис.2.43.).

Рис. 2 43. Варианты газо-жидкостных форсунок.

1. Переднее днище, 2. Среднее днище, 3. Струйно-струйная форсунка, 4. Струйно-центробежная форсунка, 5. Струйно-центробежная форсунка со шнековым завихрителем, 6. Двухкаскадная (комбинированная) форсунка: первоый каскад – газожидкостная струйно-струйная, второй каскад – жидкостная центробежная с тангенциальными отверстиями.

Вариант форсунок для смесительной головки выбирается проектантом на основании ранее полученного опыта отработки камеры двигателя – прототипа и выполнения расчетов. Расположение форсунок на днищах головки диктуется желанием проектанта получить наилучшую полноту сгорания компонентов и необходимостью создания эффективного пристеночного слоя из горючего. Последняя из упомянутых позиций, должна обеспечить допустимый режим прогрев внутренней стенки камеры (см. рис. 2.44).

Рис. 2.44. Схемы расположения форсунок на головках КС

а – Сотовое расположение форсунок.

1.Струйно-центробежнаые форсунки, 2. Центробежные форсунки.

б – Шахматное расположение форсунок

1. Форсунка окислителя 2. Форсунка горючего.

в – Расположение форсунок по концентрическим окружностям

1 Двухкомпонентная форсунка, 2. Однокомпонентная форсунка

Из рассмотрения рисунков следует, что вне зависимости от схемы расположения форсунок на днищах смесительной головки, необходимо сформировать расположение на внешнем диаметре надежную завесу из форсунок горючего.

КС ЖРД имеет еще большое число узлов, необходимых для нормального функционирования двигателя. Это коллекторы ввода и вывода компонентов, узлы поясов завес, узлы соединений частей камеры (смесительной головки, цилиндрической и сопловой секций), узлы запуска и останова, кронштейны, передающие тяговое усилие к ЛА и др.. Все перечисленные узлы, должны быть спроектированы, оценены расчетами, а также подвергнуты испытаниям, подтверждающих их работоспособность. Желание авторов осветить подобные особенности создания КС, не увязывается с необходимостью обеспечить краткость представляемого учебного пособия.

Оценка совершенства КС характеризуются коэффициентом полноты удельного импульса, определяемого по следующему выражению:

, (2.22.)

где: - коэффициент полноты удельного импульса,

I уд.п - экспериментально измеренный удельный импульс,

Теоретический удельный импульс,

Коэффициент совершенства процесса в камере,

Коэффициент совершенства процесса в сопле камеры,

Коэффициент при проектировании определяют, опираясь на статистические данные, полученные при испытаниях двигателей работающих на аналогичных компонентах. Обычно, величина этого коэффициента составляет 0,96…0,99.

Коэффициент же сопла () вычисляется с учетом потерь на трения () и потерь из-за неравномерности поля скоростей потока на срезе сопла (). Кроме того, учитываются дополнительные потери (), связанные с охлаждением потока в сопле, степень неравновесности и другие:

. (2.23.)

В общем случае, численные значения перечисленных коэффициентов укладываются следующие пределы: = 0, 975… 0, 999, = 0,98…0,99 и = 0,99…0,995. В таком случае, величина = 0,945…0, 975.

С учетом приведенных значений, величина полноты удельного импульса может находиться в пределах от 0, 9 до 0,965.

2.5.2. Жидкостные газогенераторы (ЖГГ).

Конструктивные решения и особенности внутрикамерных процессов в значительной степени зависят, устанавливаются ли ЖГГ на ЖРД «открытой» или «закрытой» схем. Для двигателей «открытой » схемы, ЖГГ выполняются с давлением, близким к давлениям основных КС. ЖГГ двигателей «закрытой» схемы обеспечивают рабочим телом (продуктами сгорания) турбины с давлением, значительно превышающим давление в основной КС. Однако, ЖГГ, как окислительного, так и восстановительного варианта, работают при коэффициентах соотношения компонентов много меньших значениях устанавливаемых для КС. Следовательно, температуры, при которых проходит процесс в камерах газогенераторов также сильно отличается от температур процесса в КС.

В ЖРД применяются двухкомпонентные и однокомпонентные ЖГГ. Наиболее широкое применение находят двухкомпонентные ЖГГ. Для двигателей с дожиганием генераторного газа, двухкомпонентные ЖГГ естественно используются как наиболее естественные. Можно отметить, что значительная часть вопросов, связанных с особенностями проектирования и отработки этого варианта ЖГГ, решаются по позициям принятым для КС. Смесительная головка форсунки и их расположение на днищах головки выполнятся по схемам, используемым, при выборе аналогичных решений для КС. В тоже время, учитывая относительно невысокий уровень температур в камере ЖГГ, обычно используется неохлаждаемый вариант стенки. На рисунке (см. рис. 2.45) представлена основная часть двухкомпонентного ЖГГ, одного из отечественных двигателей.

Рис. 2.45. Двухкомпонентный ЖГГ

Подобный вариант ЖГГ был применен в составе двигателя РД-111 Стрелками на рисунке, показаны штуцеры ввода компонентов.

Разработка однокомпонентных газогенераторов ведется по иным принципам. В недалеком прошлом, для подобных газогенераторов, в качестве компонента, использовалась перекись водорода (Н 2 О 2). В камере газогенератора располагалось специальное вещество (катализатор), взаимодействие с которым перекиси водорода приводило к получению паров воды и газообразного кислорода с высокой температурой (от 720 до 1030 К при концентрации 80% и 90%, соответственно). На рисунке (см. рис. 2.46) представлен ПГГ (так назывался газогенератор, вырабатывающий в качестве рабочего тела турбины пар), разработанный предприятием «Энергомаш» для ЖРД РД-107 и его модификаций.

Рис. 2.46. Однокомпонентный жидкостный газогенератор.

1. Штуцер входа компонента, 2. пакеты катализатора, 3 патрубки выхода пара

Компонент - перекись водорода - не единственный компонент, который может газифицироваться с целью получения рабочего тела для турбины. Особенно, если учесть, что перекись водорода повышенной концентрации не достаточно стабильна при хранении, целесообразно использовать другие компоненты. В качестве таких может применяться гидразин и несимметричный диметилгидразин (НДМГ), но для которых, также как и перекиси водорода, требуются специальные катализаторы.

2.5.3. Турбонасосный агрегат (ТНА),

ТНА во многом определяет энергетические характеристики ЖРД. Степень совершенства основных узлов ТНА, турбины и насосов, в процессе создания современных образцов, всегда находится под пристальным вниманием разработчиков двигателей. Для проектантов КС и ЖГГ, вопросы обеспечения полноты сгорания компонентов, обеспечения температуростойкости и прочности деталей и узлов, определяют успешность последующей эксплуатации создаваемого ЖРД. Для специалиста, работающего над созданием ТНА, главными вопросами являются: повышение коэффициентов полезного действия турбины и насосов, прочности их деталей (лопаток и диска турбины, крыльчаток насосов, корпусов, вала), надежности уплотнений и ряда других, определяющих надежность и совершенство ТНА. Успешное решение перечисленных позиций, увеличивает удельный импульс тяги, снижает удельную массу ТНА и двигателя. При дальнейшем рассмотрении параметров и характеристик ТНА, будет видно, что перечисленные выше позиции, впрямую зависят от такого параметра, как обороты ротора (система - «турбина, насосы, вал»).

Исходными данными для разработки ТНА принимаются типы компонентов, требования по расходам и давлениям, ресурс и другим данным, вытекающим из требований к ЖРД. Проектные проработки, позволяют сделать заключение о расходах и параметрах рабочего тела для создания требуемой мощности турбины, необходимой для привода насосов. При выполнении этих работ определяются: принципиальная компоновка ТНА, обороты ротора, системы уплотнений и, в конечном счете, его массовые характеристики.

В работах над созданием ТНА разработчик учитывает обязательные требования, которыми он руководствуется:

· обеспечение основных параметров (габаритов, массы и деталей креплений ТНА, вытекающих из требований по компоновки двигателя) и характеристик в течение заданного ресурса;

· обеспечение требуемых расходов и давлений компонентов, установленных для использования в двигателе;

· выявления позиций, предусматривающих обеспечения примерной стоимости разрабатываемого образца.

При дальнейших работах над созданием ЖРД могут устанавливаться дополнительны требования.

Среди основных позиций, определяющих конструктивный облик и параметры ТНА, следует считать компоновочные схемы ТНА. Возможные варианты схем представлены на рисунке (см. рис. 2.47) .

Рис. 2.47. Компоновочные схемы ТНА

а, б и в - однороторные ТНА, г . – многороторные ТНА

Принятые обозначения: НО – насосы окислителя, НГ – насосы горючего.

Как следует из рассмотрения рисунка, варианты компоновочных схем отличатся, выбирается ли дальнейшей проработке безредукторная схема или схема с редуктором. При безредукторной схеме, часто не удается выбрать единые оптимальные обороты для турбины и каждого из насосов. Однако ТНА с редукторной схемой будет всегда иметь худшие массовые характеристики. Современные ЖРД средних, больших и очень больших,случае, приблизительная масса ТНА может быть вычислена с использованием следующего выражения:

На рисунке (см. рис. 2.48) даны структурные схемы ТНА, с двухсторонним расположением насосов и односторонним. На схемах показаны узлы, о которых упоминалось выше.

Рис. 2.48. Структурные схемы ТНА

1. Насосы горючего, 2. Турбины, 3. и 4. Внутренние уплотнения насоса и турбины, 5. Насос окислителя, 6. Гидродинамическое уплотнение, 7. Промежуточное уплотнение.

В ЖРД средних, больших и очень больших тяг используются газовые турбины с приводом центробежных насосов. Варианты компоновок зависят от особенностей вариантов ЖРД, таких как тип компонентов, система запуска ТНА, характеристики продукта поступающего на турбину и другие. Конструктивный облик ТНА будет отличаться и от частных решений, определяемых проектантом по своему усмотрению, На рисунках (см. рис. 2.48 и 2.49) представлены виды ТНА, в которых подвод компонентов осуществляется односторонним и двухсторонним входами.

Рис. 2.42. ТНА с насосами, с односторонними входами компонентов

1.Фланец выхлопного коллектора, 2. Турбина, 3. Входной патрубок с шнеком, 4. Входной патрубок насоса горючего, 5. Рессора, 6. Выходной фланец выходного патрубка насоса горючего, 7. Корпус насоса окислителя со шнеком, 8. Фланец входного патрубка насоса горючего.

В ТНА корпуса насосов выполнены с преднасосами (шнеками), обеспечивающими повышение давление на входе перед основными, односторонними крыльчатками. Подобный вариант бустерного устройства, исключает возникновение кавитационного режима при работе насоса.

Рис. 2.50. ТНА с насосами, с двухсторонними входами компонентов

1. Фланец входного патрубка насоса горючего, 2. Входной патрубок насоса окислителя, 3. Пиростарер, 4. Фланец подвода рабочего тела к турбине, 5. Турбина, 6. Выхлопной коллектор турбины.

Представленный вид ТНА, выполнен с газовой двухступенчатой турбиной и двумя центробежным насосами. Насосы имеют двухсторонние входы компонентов. Конструкция ТНА спроектирована с двумя валами, соединенными рессорой. На одном валу, со своими двумя подшипниками и уплотнениями, смонтирована турбина и центробежный насос окислителя. На втором валу, также со своими подшипниками и уплотнениями - насос горючего. Работоспособность подшипников поддерживается консистентной смазкой, заправляемой в подшипниковые полости при сборке ТНА. Одна и вторая части ротора устанавливаются в отдельные корпуса, соединенные между собой шпильками.

В ТНА ЖРД обычно используются центробежные насосы, Для насосов ТНА очень важны антикавитационные свойства, от которых зависит эрозионное воздействие на проточную часть насоса, но и, что особенно важно, возможность срыва всех параметров, стабильность которых определяет выполнение требуемых задач всего ЖРД. Повышение антикавитационных свойств насоса обеспечивается применением специальных устройств, некоторые схемы которых были ранее представлены на рисунке 2.23. Но наиболее широко, в практике создания ТНА, применяются шнекоцентробежные насосы.

Для примера на рисунке (см. рис. 2.51) приводится конструкция кислородного шнекоцентробежного насоса.

Рис.2.51. Шнекоцентробежный насос.

1. Крышка корпуса, 2. Подшипник, 3. Крыльчатка насоса, 4. Корпус насоса. 5. Шнек, 6. Подшипник.

Эффективность насоса зависит от снижения потерь, среди которых основными являются:

· перетекание компонента из полости высокого давления (вход из крыльчатки), во входную полость;

· трения компонента о стенки внутренних полостей насоса;

· трения в уплотнениях, подшипниках.

Оцениваются перечисленные потери КПД насоса - :

Плотность компонента,

Объемный расход компонента,

Н – напор, развиваемый насосом,

N н - фактическая мощность потребляемая насосом.

Обычно КПД насосов ЖРД колеблется в пределах 0,5…0,8,

Дополнительно к отмеченным положениям, на рисунках (см. Рис. 2.52.) показаны конструкции других бустерных устройств – струнных преднасосов (эжекторов).

Рис.2.52. Конструкция струйного устройства (эжектора).

а – эжектор с рядом отверстий. 1. Корпус эжектора, 2. Отверстия подвода компонента, равнорасположенные по окружности, 3. Патрубок подвода компонента. б – эжектор с набором сопел. 1. Патрубок подвода компонента, 2. Сопла, 3. Корпус эжектора.

Струйные насосы из-за низкого КПД целесообразно применять в дви­гателях с дожиганием, так как увеличение мощности турбины при подаче активной жидкости высокого давления на эжектор практически не снижает энергетических характеристик ЖРД. На рисунке. 2.52, а приведена конструкция эжектора с двенадцатью соплами, расположенными по окружности камеры смешения с углом выхода в 18°. При соотношении расхода активной жидкости к эжектируемой до 25%, напор основного потока значительно возрастает. Однако КПД такого устройства на оптимальном режиме достига­ет не более 0,15. Малая напорная способность эжекторов при КПД от 0,08 до 0,2 ограничивает их применение в современных ТНА ЖРД.

Двигателистами КБ «Южное» была выполнена ответственная и сложная задача – разработка двигательного блока 11Д410 для лунного корабля.

Блок двигателей 11Д410 состоял из основного двигателя РД858 и резервного РД859 и решал следующие задачи: осуществление мягкой посадки на поверхность Луны, взлет с поверхности Луны и выведение лунного корабля на эллиптическую орбиту искусственного спутника Луны.

Так как предусматривался полет лунного корабля с экипажем на борту, то к надежности двигателей предъявлялись самые высокие требования. Надежность необходимо было подтвердить большим числом испытаний с имитацией натурных условий работы. Для обеспечения мягкой посадки на Луну и взлета с ее поверхности двигатель РД858 имеет два режима тяги: основной и режим глубокого дросселирования (РГД) и обеспечивает два включения. На основном режиме диапазон регулирования тяги составляет ±9,8%, на РГД – ±35%. Такое глубокое дросселирование требовало применения особых конструктивных мер для обеспечения устойчивости работы камеры двигателя при надежном охлаждении.

Резервный двигатель РД859 – однорежимный с регулированием тяги в диапазоне ±9,8%.

Высочайшие требования предъявлялись к надежности турбонасосных агрегатов двигателей: в частности к торцовым уплотнениям, разделяющим полости насоса окислителя и турбины. Потребовался значительный объем экспериментальных работ, в результате которых была подобрана наиболее надежная и работоспособная пара трения. Конструкция оказалась удачной – ТНА имели ресурс, оценивающийся тысячами секунд.

Для обеспечения надежного охлаждения корпус камеры в зоне высоких тепловых потоков имеет спиральные фрезерованные канавки переменного оптимального сечения на сложнопрофильных деталях.

Количество включений на одном двигателе достигало двенадцати вместо двух в полете. Резервный двигатель является уникальным по возможности запуска после трехсекундного перерыва между выключением и повторным запуском. Процессы выключения двигателя, опорожнения трактов камеры и повторного запуска после трехсекундной паузы тщательно исследовались для подтверждения сходимости характеристик. Параметры повторного запуска при испытаниях были идентичны первому. Ни один из существующих двигателей с турбонасосной системой подачи не обеспечивал такую возможность. Для двигателей с турбонасосной системой подачи, обеспечивающих широкий диапазон регулирования тяги, эти ЖРД имеют весьма высокие величины удельного импульса. Масса и габариты блока двигателей свидетельствуют о высокой степени совершенства конструкции, даже с учетом того, что в ее состав входили системы контроля работы двигателей и регулирования тяги. Общая масса двигателей составляет 110 кг при суммарной тяге 4100 кгс. Для сравнения: масса двигателя верхней ступени РН Ариан-5 при тяге 2700 кгс превышает 100 кг.

Очень большим был объем отработки: 181 двигатель РД858 при суммарной наработке 253281 с и 181 двигатель РД859 при суммарной наработке 209463 с. Испытано 11 блоков двигателей 11Д410 с имитацией аварийных ситуаций.

В целом блок ЖРД лунного посадочного модуля является одним из самых надежных среди своего класса двигателей. Три блока двигателей прошли успешные испытания на орбите вокруг Земли в составе специальных космических аппаратов Т-2К, запущенных ракетой-носителем Р-7.

Маршевые двигатели

Название

Тяга в пустоте, кгс

Компоненты топлива

Масса, кг

Окислитель –

азотная кислота + 27% N2O4

Горючее –

Предназначен для второй ступени ракеты 8К66 (SS-7).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для торможения и управления орбитальным космическим аппаратом по всем каналам стабилизации (разгонная ступень 8K69) (SS-9-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для второй ступени ракеты 8К99 (SS-15).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

123

Предназначен для создания тяги управления третьей ступенью ракеты 11К68 («Циклон-3») на активном участке полета по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

192

Предназначен для вторых ступеней ракет 15А15 и 15А16 (SS-17-1) и (SS-17-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

199

Предназначен для создания двух режимов тяги и управления по всем каналам стабилизации при полете ступени разведения ракеты 15А18 (SS-18-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

125,4

Предназначен для установки в головном отсеке космического буксира и ступеней разведения 15Ж44, 15Ж60 (SS-24-1) и (SS-24-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

125

Предназначен для использования в составе апогейной ступени РН «Зенит» и «Циклон-4».

Окислитель –

азотная кислота +

Горючее –

несимметричный диметилгидразин

196

Предназначен для управления полетом космического буксира второй ступени ракеты 15А18М (SS-18-3) по всем каналам стабилизации.

История жидкостных ракетных двигателей

Первым опытом самостоятельного создания в КБ «Южное» жидкостных ракетных двигателей (ЖРД) стали начатые в 1958 г. работы по разработке рулевых двигателей для первой и второй ступеней МБР 8К64. Основной особенностью данной ракеты стало применение впервые в паре с окислителем АК-27 нового горючего – несимметричного диметилгидразина (НДМГ), которое стало основным для нескольких поколений ЖРД.

Успех, достигнутый в создании первых рулевых ЖРД, позволил начать в 1960 г. разработку нового более сложного и многофункционального двигателя РД853 для второй ступени ракеты 8К66.

В 1961 г. были начаты работы по созданию рулевых двигателей для первой и второй ступеней ракеты 8К67, работающих на новой паре компонентов топлива – тетраоксид диазота (АТ) и НДМГ.

В 1962 г. началось проектирование и отработка ЖРД РД854 на топливе АТ+НДМГ без дожигания генераторного газа для тормозной двигательной установки орбитальной головной части МБР 8К69. При проектировании двигателя впервые в практике отечественного двигателестроения было разработано и освоено в производстве трубчатое сопло камеры двигателя.

В 1964 г. были начаты работы по созданию маршевого двигателя РД857 второй ступени комбинированной ракеты 8К99, для которого впервые была разработана схема с дожиганием восстановительного генераторного газа в камере сгорания. На этом двигателе также впервые управление вектором тяги осуществлено с помощью вдува генераторного газа в сверхзвуковую часть сопла.

КБ «Южное» приняло участие и в советской лунной программе, в рамках которой в 1965 г. началась разработка ракетного блока (блока Е) лунного корабля комплекса 11А52. Созданный в КБ «Южное» блок двигателей лунного корабля состоял из основного двигателя РД858 и резервного РД859 и решал следующие задачи: осуществление мягкой посадки на поверхность Луны, взлет с поверхности Луны и выведение лунного корабля на эллиптическую орбиту искусственного спутника Луны. В целом блок ЖРД лунного посадочного модуля являлся одним из самых надежных среди своего класса двигателей. Три блока двигателей прошли успешные испытания на орбите вокруг Земли в составе специальных космических аппаратов Т-2К, запущенных с помощью РН «Союз».

Проектирование двигателя РД861 для третьей ступени РН «Циклон-3» было начато в 1966 г. Этот двигатель обладает весьма высокими энергомассовыми характеристиками.

В 1976 г., в ходе создания МБР 15А18, начались работы по разработке четырехкамерного двигателя РД864, работающего на АТ и НДМГ по схеме без дожигания генераторного газа. Двигатель обеспечил работу на двух режимах: основном и дросселированном с многократным (до 25 раз) переключением с одного режима на другой. Для этого двигателя были впервые разработаны и применены агрегаты регулирования на встречных струях высокого давления, отличающиеся высокой точностью и быстродействием.

Модификацией этого двигателя стал двигатель РД869 для МБР 15А18М, обладающий еще более высокими характеристиками.

Новым этапом для КБ «Южное» явилась разработка РН «Зенит-2», которая началась в 1977 г. Особенностью данной РН является использование на ней криогенных компонентов топлива: керосина и жидкого кислорода, при этом впервые в практике двигателестроения рулевой двигатель на указанных компонентах топлива было решено проектировать по схеме с дожиганием генераторного газа. Благодаря накопленному опыту конструирования ЖРД, внедрению передовых технических решений в ходе проектирования двигателя РД-8 удалось получить высокие энергомассовые характеристики, обеспечить высокую надежность и длительный ресурс работы.

Рулевые двигатели

Название

Тяга у Земли, кгс

Компоненты топлива

Удельный импульс в пустоте, кгс?с/кг

Масса, кг

Окислитель –

азотная кислота + 27% N2O4

Горючее –

несимметричный диметилгидразин

Предназначен для управления первой ступенью ракеты 8К64 (SS-7) по всем каналам стабилизации.

4920 (в пустоте)

Окислитель –

азотная кислота + 27% N2O4

Горючее –

несимметричный диметилгидразин

Предназначен для управления второй ступенью ракеты 8К64 (SS-7) по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления первой ступенью ракеты 8К67 (SS-9-1; SS-9-2) и ракет-носителей «Циклон» по всем каналам стабилизации.

5530 (в пустоте)

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления второй ступенью ракеты 8К67 (SS-9-1; SS-9-2) и ракет-носителей «Циклон» по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления полетом первой ступени ракет 15А15 и 15А16 (SS-17-1) и (SS-17-2).

8000 (в пустоте)

Окислитель –

жидкий кислород

Горючее –

Предназначен для управления полетом второй ступени ракет-носителей «Зенит» по всем каналам стабилизации.

Реактивное движение - это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя. Принцип работы его основан именно на этой силе. Как же действует такой двигатель? Попробуем разобраться.

Исторические факты

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки - Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски - революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем - это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику - жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород. Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского. Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания. Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу. За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Устройство

Устроен типичный реактивный двигатель следующим образом. Основные его узлы - это:

Компрессор;

Камера для сгорания;

Турбины;

Выхлопная система.

Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача - всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.

Мотор самолета

В самолетах также используются эти двигатели. Так, например, в огромных пассажирских лайнерах устанавливают турбореактивные агрегаты. Они отличаются от обычных наличием двух баков. В одном находится горючее, а в другом - окислитель. В то время как турбореактивный мотор несет только топливо, а в качестве окислителя используется воздух, нагнетаемый из атмосферы.

Турбореактивный мотор

Принцип работы реактивного двигателя самолета основан на той же реактивной силе и тех же законах физики. Самая важная часть - это лопасти турбины. От размеров лопасти зависит итоговая мощность.

Именно благодаря турбинам вырабатывается тяга, которая нужная для ускорения самолетов. Каждая из лопастей в десять раз мощнее обыкновенного автомобильного ДВС. Турбины установлены после камеры сгорания там, где наиболее высокое давление. А температура здесь может достигать полутора тысяч градусов.

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.

Но сам двигатель имеет более сложную конструкцию и больший вес.

Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй - к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления. В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления. Затем газы проходят через турбину низкого давления. Последняя приводит в действие вентилятор и, наконец, газы попадают наружу, создавая тягу.

Синхронные РД

Это электрические моторы. Принцип работы синхронного реактивного двигателя аналогичен работе шагового агрегата. Переменный ток подается на статор и создает магнитное поле вокруг ротора. Последний вращается за счет того, что пытается минимизировать магнитное сопротивление. Эти моторы не имеют отношения к освоению космоса и запуску шаттлов.

Loading...Loading...