Самый быстрый гиперзвуковой самолет в мире. Российский гиперзвуковой самолет. Гиперзвуковой самолет — фантазия или реальность? Гиперзвуковые беспилотные летательные аппараты

Гиперзвуковые летательные аппараты, которые в ближайшем будущем достигнут технической зрелости, возможно, радикально изменят всю сферу ракетных вооружений. О гонке вооружений в данной сфере говорить пока рано - на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).

Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы - это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты - вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук - штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.

SR-72 - перспективный американский летательный аппарат, который может стать функциональным аналогом легендарного SR-71 - сверхзвукового и сверхманевренного разведчика. Главное отличие от предшественника - отсутствие пилота в кабине и гиперзвуковая скорость.

Удар с орбиты

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах - , гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего, имеются в виду следующие характеристики: скорость полета - 5-10 М (6150-12 300 км/ч) и выше, охватываемый рабочий диапазон высот - 25-140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов - это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов.

Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 (6 М), самолет «Аякс» (8-10 М), проекты высотно-скоростных гиперзвуковых самолетов ОКБ им. Микояна на углеводородном топливе в разных вариантах применения и гиперзвукового самолета (6 М) на двух видах топлива - водороде для больших скоростей полета и керосине для меньших.


Разрабатываемая в США гиперзвуковая ракета Boeing X-51A Waverider.

Оставил свой след в истории инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«Циркон» для флота

17 марта 2016 года стало известно, что . Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, . Скорость 5-6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км.

Разработчик ПКР «Циркон» - НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».

Хитроумная боеголовка

Первая (так оно обозначено на Западе) на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых ракет «Сармат». Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.

Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011-2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться МБР «Сармат».

Подняться ввысь

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4-5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении МиГ-31 и МиГ-31БМ. Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.

Гиперзвук Поднебесной

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что , который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М.

Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.

Проекты Америки

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon), гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА Х-43 Hyper-X, прототип гиперзвуковой крылатой ракеты Х-51А Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.

Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА SR-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50-80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. SR-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух-поверхность» в виде легких ракет без двигателя - он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000 °C и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5-6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 - в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.

Желание создать как можно более быструю военную технику – это ключевая цель для любого государства, ведь только высокие скорости являются гарантией преодоления средств воздушной защиты. По этой причине технологии гиперзвукового оружия активно осваивались еще в гитлеровской Германии. Позже они перекочевали к союзникам, которые продолжили выдающие разработки.

Однако только в последние десятилетия технологии позволили сделать качественный шаг вперед. Для России это выражено в секретном проекте Ю-71 – гиперзвуковом летательном аппарате.

История создания гиперзвукового оружия

Гиперзвуковое оружие получило максимальное свое развитие в период «Холодной войны». Как и многие выдающиеся военные проекты человечества, принципиально новые технологии создавались в условиях конкуренции между США и СССР. Первые попытки превзойти скорость звука (а именно преодолеть барьер в 1234,8 км/ч) не привели к серьезным достижениям. Но и нельзя не отметить, что задачи ставились почти невыполнимые даже для таких мощных держав.

Об этих проектах известно не так много, но дошли некоторые сведения, что, например, в СССР перед конструкторами стояла задача сделать:

  • самолет, который смог бы развить скорость как минимум в 7000 км/ч;
  • надежную конструкцию, чтобы использовать технику много раз;
  • управляемый самолет, чтобы максимально затруднить возможность его обнаружения и ликвидации;
  • наконец, превзойти аналогичную разработку штатов – X-20 Dyna Soar.

Но во время испытаний стало понятно, что даже подняться в воздух с близкими скоростями и необходимой конструкцией не получается, и Советский Союз закрыл проект.

К счастью для руководства СССР, американцы также не достигли продвижения: лишь немногочисленное количество раз гиперзвуковой летательный аппарат поднимался на суборбитальную высоту, но в большинстве ситуаций терял управление и разбивался.

Развитие сверхзвуковых технологий в 21 веке

Гиперзвуковые технологии тесно переплетаются в двух разных направлениях: создании баллистических и управляемых ракет или конструировании полноценного летательного аппарата.

И если ракеты, превышающие скорость звука в несколько раз уже успешно создаются и даже участвуют в военных действиях, то летательные аппараты требуют поистине гениальных конструкторских решений. Основная загвоздка заключается в том, что перегрузки на высоких скоростях при маневрах измеряются даже не десятками, а сотнями g. Спланировать такие нагрузки и обеспечить технике надежность - довольно сложная задача.

Технологии не стоят на месте, поэтому в 21 веке в России был реализован проект «4202», который часто упоминается как Ю-71 - гиперзвуковой летательный аппарат.

Он вырос на основе развития гиперзвуковых технологий в ракетах.

О разработке известно очень мало, ведь подобные работы велись и ведутся не только в СССР, а затем России, но и США, а также Китае, Британии, Франции. Желание ведущих мировых держав сохранить сложные и дорогостоящие открытия в секрете, вполне понятны, так как с гиперзвуковой техникой будет достигнуто серьезное военное превосходство.


Известно, что первые успехи были достигнуты еще в СССР, в 1991 году. Тогда в воздух успешно поднялся летательный аппарат «Холод». Запускался аппарат на базе зенитно-ракетного комплекса С-200, с помощью ракеты 5B28. У инженеров получилось осуществить управляемый полет и развить скорость в 1900 км/ч. После этого возможности только расширялись, но в 1998 году испытания прекратили. Причина оказалась прозаичной - разразившийся в стране кризис.

С учетом высокой секретности информации, достоверных источников не так много.

Однако в зарубежной прессе приводятся такие сведения, что в 20-2010 гг. Россия вновь приступила к разработке гиперзвуковых проектов. Задачи ставились такие:

  1. Опережающими темпами создавать баллистические и управляемые ракеты для гарантированного преодоления любых известных средств перехвата до достижения цели.
  2. Разработать ракетные комплексы со скоростью ракет, превышающей скорость звука до 13 раз.
  3. Провести испытания летательного аппарата со средствами доставки ядерного и не ядерного вооружения.

Основная причина разработки такого вооружения базировалась на том, что аналогичный проект американцев Prompt Global Strike разрабатывался для базирования на кораблях и самолетах, чтобы гарантировано поражать любую точку планеты за 1 час. Естественно, Россия должна была ответить таким же оружием, потому что ни одна страна не располагает средствами перехвата, способными работать по целям с такой высокой скоростью.

Самые известные факты о секретном оружии России - Ю-71

Уже на старте работ идеи проекта «4202» серьезно опережали свое время, так как главным конструктором был гениальный Глеб Лозино-Лозинский. Но создать полноценный летательный аппарат смогли гораздо позже, уже в России.

По данным зарубежных источников, испытания глайдера, а именно летательного аппарата Ю-71 прошли не в начале 2015 года, как говорит военное руководство России. Есть сведения, что уже в 2004 году на Байконуре проводились запуски предположительно нового гиперзвукового глайдера. Подтверждает эту версию то, что в 2012 году на одном из оборонных предприятий страны в городе Реутов было озвучено новогоднее поздравление, где сотрудникам объявили, что проект «4202» является ключевым на ближайшее время.

В целом, российский сверхзвуковой самолет Ю-71 крайне сложно сбить и даже отследить. Поэтому много информации сокрыто для обывателей. По имеющимся сведениям, Ю-71 отличается следующими характеристиками:

  1. Гиперзвуковой летательный аппарат стартует с околоземной орбиты. Туда он доставляется ракетами типа УР-100Н УТТХ. На уровне мнений говорится о том, что в дальнейшем за доставку будет отвечать новейшая ракета «Сармат» МБР РС-28.
  2. Максимальная зафиксированная скорость Ю-71 оценивается в 11200 км/ч. Эксперты утверждают, что аппарат способен маневрировать на завершающей части траектории. Но даже без этой способности он остается не досягаемым для средств ПВО и ПРО из-за высокой скорости. По заверениям российских военных, Ю-71 может маневрировать по высоте и курсу с момента старта на околоземной орбите.
  3. Ю-71 может выходить в космос, чем становится еще более незаметным для большинства средств обнаружения.
  4. Считается, что с момента запуска глайдер может за 40 минут долететь до Нью-Йорка, неся на борту ядерные боеголовки.
  5. Гиперзвуковые модули отличаются очень большой массой, поэтому военное руководство рассматривает возможность доставки на околоземную орбиту сразу несколько Ю-71 более мощными ракетами, чем используются сейчас.
  6. Глайдер имеет 3 отсека с различным оборудованием и вооружением.
  7. Существует мнение, что Россия приступает к активному производству проекта Ю-71. Так, предположительно ПО «Стрела» под Оренбургом полностью технически перестраивается для сборки гиперзвукового вооружения.

Единственными сведениями, которые называются точными, это развиваемая летательным аппаратом скорость и способность маневрировать в полете.


Остальная информация держатся в секрете. Но уже понятно, что Россия готова адекватно ответить в гиперзвуковой гонке.

Конкуренты Ю-71

Гиперзвуковые технологии – предмет работы ведущих мировых держав. Некоторые добились серьезных достижений, для кого-то расходы оказались большими или не получилось вытянуть крайне технологичные проекты. Главными конкурентами России сегодня называются США и Китай.

Конкуренты Описание
1.Глайдер Advanced Hypersonic Weapon (США). Летательный аппарат AHW стал частью программы Prompt Global Strike. Технические стороны сокрыты под семью печатями.
Известно только, что глайдер развивает до 8 махов скорости (10 000 км/ч).
Первые испытания у него признаны успешными, а во время вторых взорвалась ракета-носитель. Так что можно уверенно говорить, что работы за океаном еще не закончены.
2.Глайдер WU-14 (КНР). Большие устремления КНР направлены на создание гиперзвуковых баллистических и крылатых ракет. Но разрабатывается также и глайдер WU-14.
Известно, что он развивает до 10 махов (чуть больше 12000 км/ч).
В некоторых источниках также приводится информация, что китайцы работают над собственным прямоточным гиперзвуковым двигателем специально для прямого запуска глайдера с самолетов.

Человечество в 21 веке вплотную подобралось к гиперзвуковому оружию.


Если верить утечкам информации, то Россия может быстрее остальных заявить о финальной стадии, а именно принятии на вооружение таких технологий. Это принесет ощутимое преимущество в военном плане.

Перспективы российского Ю-71

По некоторым сведениям, Ю-71 прошел испытания и готовится к серийному выпуску. Хоть проект и секретный, в ряде источников указывается, что к 2025 году Россия будет располагать 40 такими глайдерами с ядерными боеголовками.

Пусть запуски Ю-71 дорогостоящие, использовать аппарат можно для разных целей. Называется и способность в кратчайшие сроки доставить боезаряд в любую точку планеты, и, например, транспортировка продовольствия, снабжения.

Ю-71 за счет маневренности можно применять как штурмовик или бомбардировщик в глубоком тылу противника.

Размещаться Ю-71 будет, скорее всего, под Оренбургом, в тылу, так как самая уязвимая часть полета - старт и достижение орбиты. После отделения глайдера от ракеты, отследить его движение и, тем более, сбить, становится невозможным для современных систем ПРО или ПВО.

Видео

О гонке вооружений в данной сфере говорить пока рано - на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).


Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы - это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты - вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук - штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.


Стремительный разведчик
SR-72 - перспективный американский летательный аппарат, который может стать функциональным аналогом легендарного SR-71 - сверхзвукового и сверхманевренного разведчика. Главное отличие от предшественника - отсутствие пилота в кабине и гиперзвуковая скорость.

Удар с орбиты

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах - маневрирующих боевых головках МБР, гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего имеются в виду следующие характеристики: скорость полета - 5−10 М (6150−12 300 км/ч) и выше, охватываемый рабочий диапазон высот - 25−140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов - это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов. Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 (6 М), самолет «Аякс» (8−10 М), проекты высотно-скоростных гиперзвуковых самолетов ОКБ им. Микояна на углеводородном топливе в разных вариантах применения и гиперзвукового самолета (6 М) на двух видах топлива - водороде для больших скоростей полета и керосине для меньших.


Разрабатываемая в США гиперзвуковая ракета Boeing X-51A Waverider

Оставил свой след в инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«Циркон» для флота

17 марта 2016 года стало известно, что Россия официально приступила к испытаниям гиперзвуковой противокорабельной крылатой ракеты (ПКР) «Циркон». Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, флагман российского флота «Петр Великий». Скорость 5−6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км. Разработчик ПКР «Циркон» - НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».


Крылатый удар
Беспилотный гиперзвуковой планирующий самолет, разрабатывавшийся в КБ Туполева в конце 1950-х годов, должен был представлять собой последнюю ступень ракетной ударной системы.

Хитроумная боеголовка

Первая информация о запуске изделия Ю-71 (так оно обозначено на Западе) на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых ракет «Сармат». Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.

Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.


Элемент планера гиперзвукового , которое так и осталось проектом
Длина самолета должна была составить 8 м, размах крыльев - 2,8 м.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011−2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться МБР «Сармат».

Подняться ввысь

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4−5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении МиГ-31 и МиГ-31БМ. Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.


SR-71
Сегодня этот самолет, давно снятый с вооружения, занимает заметное место в истории авиации. На смену ему идет гиперзвук.

Гиперзвук Поднебесной

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что Китай успешно провел испытания гиперзвукового маневрирующего ЛА DF-ZF Ю-14 (WU-14), который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М. Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.

Проекты Америки

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon), гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА Х-43 Hyper-X, прототип гиперзвуковой крылатой ракеты Х-51А Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.


Космическая «спираль»
Гиперзвуковой самолет-разгонщик, разрабатывавшийся по проекту «Спираль». Также предполагалось, что в систему будет входить военный орбитальный самолет с ракетным ускорителем.

Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА SR-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50−80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. SR-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух-поверхность» в виде легких ракет без двигателя - он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000 °C и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5−6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 - в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.

Принципы гиперзвукового ударного оружия и основы его боевого применения были разработаны ещё в 1930-е годы в фашистской Германии. Только после перелома в ходе Второй мировой войны, к 1942 году, работы над созданием гиперзвукового «бомбардировщика» были прекращены. Возможно ли возвращение гиперзвукового ударного оружия сегодня?

Чудовище доктора Зенгера

В 1933 году доктор Е. Зенгер обосновал возможность создания гиперзвукового летательного аппарата, способного при разгоне до 5900 м/сек выходить в верхние слои атмосферы и при последующем снижении до 10 км, рикошетируя от плотных слоёв атмосферы (как камень от воды), улетать на дальность до 23400 км.

Первый гиперзвуковой летательный аппарат был спроектирован в НИИ техники ракетного полёта (г. Трауен, Германия) в 1936 году и получил название «бомбардировщик-антипод».

«Чудовище доктора Зенгера» имело вес около 100 тонн в заправленном состоянии, запуск аппарата предполагалось проводить под углом 30 градусов с рельсовых направляющих длиной около трёх км. Полезная нагрузка в этом случае составляла около 0,3 тонны взрывчатки. В случае успешной реализации этого проекта под угрозой ракетных ударов Германии оказывался практически весь земной шар.

Концепция мгновенного глобального удара

Идея применения гиперзвуковых ракет очень напоминает современную «Концепцию мгновенного глобального удара», которая в последнее время кружит голову многим политикам за рубежом…

Попытки создать гиперзвуковые ракеты были возобновлены в мире практически сразу после окончания Второй мировой войны и особенно активизировались в период холодной войны.

Большинство разработок в этот период закончились на этапе экспериментальной отработки и демонстрации технологий - конструкционные материалы не выдерживали аэродинамического нагрева на скорости выше 5 М. Управление аппаратом при таких скоростях и перегрузках было невозможно, и высокоточное наведение на цель практически не было достигнуто…

Интерес к гиперзвуковому оружию вновь резко возрос после недавнего провозглашения «Концепции мгновенного глобального удара» и создания Командования глобального удара в составе ВВС США. Так, в мае 2003 года Министерство обороны США официально объявило о начале работ над высокоточным неядерным оружием, способным поражать цели в любой точке планеты «за считанные минуты или часы».

В соответствии с принятой концепцией в состав ударных вооружений Командования глобального удара, наряду с достаточно хорошо отработанными и эффективными ракетными комплексами стратегического назначения типа «Минитмен-III», «Трайдент-II» и стратегическими крылатыми ракетами большой дальности, в перспективе должны войти гиперзвуковые летательные аппараты с неядерным оснащением.

Наиболее перспективные образцы ГЗЛА (гиперзвукового летательного аппарата) разработаны к настоящему времени в США - стране-лидере в этой области. Среди множества проработанных вариантов гиперзвуковых летательных аппаратов на этап экспериментальной отработки в настоящее время вышли три основных типа ГЗЛА:

Гиперзвуковая крылатая ракета (ГЗКР);

Воздушно-космический самолёт (ВКС);

Планирующая головная часть (ПГЧ).

Гиперзвуковая крылатая ракета Х‑43 А

После безуспешного проведения ряда исследовательских программ по созданию ГЗКР (гиперзвуковых крылатых ракет) к 2004 году основные усилия военно-промышленного комплекса США были сосредоточены на проекте HyStrike.

Стандартное требование заключалось в демонстрации крейсерского режима экспериментального ГЗЛА (М=6,5) на высоте 27,4 км и достижении максимальной дальности не более чем за 10 минут полёта. Наибольшие сложности при длительном гиперзвуковом полёте такого аппарата возникали из-за значительного аэродинамического нагрева элементов такой ГЗКР (см. рисунок 1).

По контракту фирмы Boeing и Aerojet должны были провести 11 испытательных полётов, причём в восьми последних аппарат должен быть оснащён работающим двигателем. Фирма Aerojet должна была построить 14 экспериментальных двигателей: шесть для наземных испытаний и восемь для лётных.

27 марта 2004 года прошли лётные испытания нового экспериментального образца ГЗЛА типа Х‑43А. Для сброса аппарата также использовался самолёт-носитель В‑52, а для разгона ГЗЛА была использована ракета типа Pegasus («Пегас»). Старт производился на высоте 12 км. Отделение аппарата от ускорителя «Пегас» произошло на высоте 29 км, затем включился прямоточный воздушно-реактивный двигатель, работавший 10 секунд.

При скоростном планировании со снижением удалось достичь скорости в 7 М, то есть 8350 км/час. По другим данным, скорость Х‑43А составила 11 265 км/ч (или 9,8 М) на высоте полёта 33,5 км. По экспертным оценкам, более реалистична меньшая скорость полёта. Результаты этого эксперимента были положены в основу создания нового ГЗЛА типа Х‑51А.

Консорциум трёх организаций - исследовательской лаборатории ВВС США AFRL (Air Force Research Laboratory) и компаний Boeing и Pratt & Whitney - разработал программу создания и лётных испытаний такого гиперзвукового летательного аппарата.

Разработка ГЗЛА была ориентирована на создание перспективного прямоточного воздушно-реактивного двигателя конструкции типа «волнолёт» (WaveRider). Корпорации Boeing и Pratt & Whitney завершили к 2009 году наземную отработку двигателя, в том числе и его топливной системы. Лаборатория ВВС AFRL выделила на испытания 250 млн долларов. Эти средства были предназначены для выполнения четырёх испытательных полётов, которые должны были состояться в конце октября - начале ноября 2009 года.

Корпорация Boeing построила четыре прототипа (экспериментальных образца) ГЗЛА. Согласно проекту гиперзвуковой аппарат типа Х‑51А должен развивать скорость до 7 М.

После цикла лётных испытаний должно быть принято решение о дальнейшем финансировании проекта или его прекращении. Сам Boeing высказывал намерение построить ещё два образца для дополнительных лётных тестов. Все экспериментальные образцы ГЗЛА были одноразовые. При этом, по официальным заявлениям, Х‑51А не являлся образцом вооружения, а служит только для моделирования и отработки новых технологий. Уже на основе полученных результатов Департамент обороны должен был заказывать разработку новых образцов гиперзвукового ракетного вооружения для армии США. Корпорация Boeing также намерена продолжить работу над Х‑51А в инициативном порядке с целью создания на её основе перспективной ГЗКР типа X‑51A+.

По мнению разработчиков, эта перспективная гиперзвуковая ракета (X‑51A+) получит способность резко менять направление полёта, самостоятельно находить цель, идентифицировать её и уничтожать в условиях активного радиоэлектронного противодействия. Соответствующие бортовые системы управления ГЗЛА уже создаются при финансировании ВВС США.

Испытания на начальном этапе проводились в статическом режиме с подвешиванием макета экспериментального гиперзвукового аппарата Х‑51А под бомбардировщик B‑52H, с которого будет производиться пуск, для проверки совместимости электронных систем самолёта и ГЗЛА.

В воздух Boeing X‑51A впервые поднялся в декабре 2009 года в качестве подвесного груза под крылом бомбардировщика B‑52 (см. рисунок 2). В ходе экспериментального полёта проводилось исследование влияния подвешенной ракеты на управляемость самолёта, а также взаимодействие электронных систем X‑51A и B‑52. Полёт длился около 1,4 часа.


В экспериментальном гиперзвуковом летательном аппарате типа Boeing Х‑51А используется разгонная ступень оперативно-тактической ракеты ATACMS. Применение твёрдотопливного ускорителя данной конструкции предполагает следующую типовую схему применения ГЗЛА. После сброса гиперзвукового аппарата на высоте около 10 км с борта В‑52Н включается первая ступень ГЗЛА (первая ступень ОТР ATACMS) и происходит разгон аппарата до 4-5 М с набором высоты в диапазоне 20-30 км. Далее происходит её отделение и включается вторая ступень типа «волнолёт» на основе ПВРД новой разработки и ускоряет аппарат до 7-8 М с последующим склонением ГЗЛА на атакуемый наземный объект.

Проведённый анализ результатов разработки и испытаний гиперзвукового летательного аппарата типа Boeing Х-51А позволяет сделать следующие выводы:

1. Полученные к настоящему времени фактические результаты по достижению гиперзвуковой скорости (5 М) и анализ требований по скорости к перспективным образцам ГЗЛА (7 М) показывают, что предельной скоростью перспективного гиперзвукового летательного аппарата с ПВРД является скорость около 6-7 М. Достижение больших скоростей (до 10 М) в ближне- и среднесрочной перспективе представляется сложнореализуемым ввиду предела энергетических возможностей реактивного топлива серии JP и ограничений по термостойкости существующих (серийных) конструкционных материалов для длительного полёта ГЗЛА.

2. Пристеночное плазмообразование, возникающее при достижении летательным аппаратом скорости 9,5-10 М, вызывает перебои в работе бортовых радиосредств системы наведения ГЗЛА и также ограничивает наведение летательных аппаратов на таких скоростях.

3. Массогабаритные размеры экспериментального образца ГЗЛА в настоящее время определяются необходимым запасом реактивного топлива и габаритами прямоточного воздушно-реактивного двигателя и составляют по длине около 4,5 метра, диаметр описанной окружности около 0,5 метра. В перспективе при дополнительном размещении в составе боевого образца ГЗЛА типового ядерного заряда США (ориентировочная длина - 1,1 метра, диаметр - 0,3 метра) длина аппарата (планера) может быть увеличена ориентировочно до 5-6 метров. При неядерном (фугасном) боевом оснащении массогабаритные размеры такой ГЗКР будут ещё больше.

4. Применение в конструкции аппарата лобовых сегментных воздухозаборников, аэродинамических рулей и общей аэродинамической схемы типа «волнолёт» вызывает значительное увеличение его эффективной поверхности рассеяния (ЭПР) относительно базовых величин ЭПР конусообразных тел вращения аналогичных размеров (типа ГЧ БРСД).

5. В итоге перспективный ГЗЛА будет обладать значительными массогабаритными размерами и отражательно-излучательными характеристиками в тепловом и радиолокационном диапазоне при относительно небольшой средней скорости (не выше 6 М).

Первый самостоятельный испытательный полёт X‑51A состоялся 26 мая 2010 года. Бомбардировщик B‑52 Stratofortress с аппаратом X‑51A на высоте 15 тыс. метров над Тихим океаном сбросил подвешенную под крыло ракету. После этого разгонная ступень (твёрдотопливный ракетный ускоритель) вывела аппарат на высоту в 19,8 тыс. метров и разогнала её до 4,8 М. Максимальная скорость в 5 М была достигнута аппаратом на высоте около 21,3 тыс. метров.

После разгона ГЗЛА включился гиперзвуковой прямоточный воздушно-реактивный двигатель производства Pratt & Whitney Rocketdyne. В качестве инициирующего жидкого ракетного топлива использовался этилен. После этого двигатель перешёл на топливо типа JP‑7 (Jet Propellant 7 - стандарт ракетного топлива MIL-T‑38219) - смесевое реактивное топливо на основе углеводородов, включая нафталин, с добавлением смазочных фторуглеродов и окислителя.

Но на 110‑й секунде полёта ГЗЛА произошёл сбой. Затем работа двигателя восстановилась, полёт продолжился, пока на 143‑й секунде полёта не случился окончательный отказ. Связь прервалась на три секунды, и операторы передали команду на самоуничтожение. Скорость в 6 М набрать не удалось. Впрочем, для первого полёта ГЗЛА ставилась задача набрать скорость только в 4,5-5 М.


Планировалось, что полёт продлится 250 секунд. Была израсходована половина топлива, а причиной сбоя работы двигателя признали плохое уплотнение топливной системы. В целом испытания сочли вполне удавшимися, а результат лётного испытания был признан успешным. По мнению специалистов, аппарат выполнил 90% поставленных задач. В ходе полёта выяснилось, что аппарат не способен разгоняться так быстро, как ожидалось, и нагревается гораздо больше, чем рассчитывали. Также происходили перебои со связью и передачей телеметрии.

В целом, по заключению исследовательской лаборатории ВВС США, первый полёт ГЗЛА типа X‑51A был оценён как успешный. Время полёта на данном этапе экспериментальной отработки было достаточным. Ведь предыдущий рекорд длительности полёта на гиперзвуковой скорости составлял всего 12 секунд.

Во время вторых испытаний Х‑51А 13 июня 2011 года отказ двигателя повторился. Но в этот раз перезапустить его не удалось, и аппарат упал в акваторию Тихого океана возле побережья Калифорнии. И это уже было расценено как серьёзная задержка в создании действующего образца. По заключению аварийной комиссии, причиной аварии ГЗЛА был отказ в прямоточном воздушно-реактивном двигателе.

1 мая 2013 года был проведён четвёртый запуск ГЗЛА (см. рисунок 4), в результате лётного испытания была достигнута скорость в 5,1 М, полёт продолжался около шести минут, из них три с половиной минуты работал прямоточный воздушно-реактивный двигатель. Ускоритель обеспечил набор скорости до 4,8 М, ПВРД - до 5,1 М, на топливе типа JP‑7.


Подготовка к четвёртому эксперименту

Решение о дальнейшей разработке боевого образца ГЗКР на базе ГЗЛА Boeing Х‑51А в настоящее время не принято.

В целом, с учётом указанных проблем, создание боевого образца ГЗКР на базе экспериментального гиперзвукового летательного аппарата Boeing Х‑51 А представляется маловероятным.

Гиперзвуковой летательный аппарат Boeing Х‑37

В настоящее время в США также продолжается создание технологического задела, необходимого для разработки одноступенчатых воздушно-космических самолётов (ВКС). Основу его составляют результаты, полученные в ходе выполнения программы NASP.

На данном этапе понимания возможностей ВКС, его задач и условий применения воздушно-космическим самолётом называется летательный аппарат самолётной схемы, который способен самостоятельно осуществлять взлёт с обычных аэродромов, выход на низкую околоземную орбиту и длительный орбитальный полёт, аэродинамическое маневрирование в атмосфере Земли с целью изменения параметров орбиты, сход с орбиты и посадку на заданный аэродром.

Однако на данный момент конкретный вариант полномасштабного ВКС, то есть летательного аппарата, полностью отвечающего требованиям Департамента обороны США к боевым летательным аппаратам такого типа, отсутствует. Ожидаемый облик ВКС, его основные ТТХ и возможные способы боевого применения были оценены исходя из общей целевой направленности задач, возлагаемых на космическое вооружение, и основных требований, предъявляемых американскими военными специалистами к ВКС.

Появление базового экспериментального образца-демонстратора ВКС ожидалось не ранее 2014-2015 года. В настоящее время в США действительно создан прототип такого воздушно-космического самолёта - экспериментальный гиперзвуковой летательный аппарат Boeing X‑37.

Гиперзвуковой летательный аппарат Boeing X‑37 (см. рисунок 5) - экспериментальный орбитальный самолёт, создан для отработки перспективных промышленных технологий запуска на орбиту и спуска в атмосферу. По мнению экспертов, Boeing X‑37 (беспилотный космический корабль многоразового использования) является увеличенной на 120% производной от ГЗЛА типа Boeing X‑40A.


В настоящее время при проведении инженерных расчётов принимаются следующие тактико-технические характеристики этого ГЗЛА:

Длина: 8,9 м

Размах крыла: 4,5 м

Высота: 2,9 м

Взлётная масса: 4 989 кг

Ракетный двигатель «Рокетдайн» AR-2/3

Масса полезного груза: 900 кг

Грузовой отсек: 2,1×1,2 м

Самолёт предназначен для функционирования на высотах от 200 до 750 км, способен быстро менять орбиты, маневрировать, может выполнять различные разведывательные задачи, доставлять небольшие грузы в космос (и возвращать их).

Работы по созданию летательного аппарата типа X‑37 велись в США ещё с 1950‑х годов. Программа создания X‑37B была начата в 1999 году NASA совместно с корпорацией Boeing. Стоимость разработки экспериментального космолёта составила около 173 млн долларов.

Первый тестовый полёт - испытание планера ГЗЛА путём сбрасывания - был совершён 7 апреля 2006 года. Первый космический полёт состоялся 22 апреля 2010 года в 19:52 по местному времени. Для запуска использовалась ракета-носитель «Атлас‑5», место запуска - стартовая площадка SLC‑41 авиабазы «Мыс Канаверал». Пуск прошёл успешно. В ходе полёта были испытаны навигационные системы, управление, теплозащитная оболочка и система автономной работы аппарата.

3 декабря 2010 года воздушно-космический самолёт Х‑37В вернулся на Землю, орбитальный самолёт провёл в космосе 225 дней. Посадка, как и полёт, проводилась в автоматическом режиме и была осуществлена в 09:16 UTC на взлётно-посадочную полосу базы ВВС США «Ванденберг», расположенную северо-западнее Лос-Анджелеса (штат Калифорния).

В ходе пребывания на орбите X‑37B получил около семи повреждений обшивки в результате столкновения с космическим мусором. Во время посадки также лопнуло колесо шасси. Отлетевшие фрагменты резины нанесли незначительные повреждения нижней части фюзеляжа аппарата. Несмотря на то, что покрышка шасси лопнула при касании посадочной полосы, аппарат не отклонился от курса и продолжил торможение, держась ровно середины посадочной полосы.

ВВС США совместно с концерном Boeing занялись подготовкой второго аппарата X‑37B к выводу в космос. Следующий запуск Х‑37 В‑2 (OTV‑2) был запланирован на 4 марта 2011 года. Время старта, программа полёта и стоимость проекта были засекречены. Испытания аппарата были проведены на более широкой орбите при усложнённых условиях схода с неё и захода на посадку. Программа OTV‑2 была расширена по сравнению с OTV‑1.

5 марта 2011 года аппарат был выведен на орбиту ракетой-носителем «Атлас‑5», стартовавшей с мыса Канаверал. С помощью второго аппарата X‑37B будут отрабатываться сенсорные приборы и системы спутников. 16 июня 2012 года летательный аппарат приземлился на базе американских военно-воздушных сил «Ванденберг» в штате Калифорния, проведя 468 дней и 13 часов на орбите, облетев вокруг Земли более семи тысяч раз.

Очередной беспилотный космический аппарат X‑37B был запущен с помощью ракеты-носителя «Атлас‑5» с космодрома на мысе Канаверал 11 декабря 2012 года. Как и ранее, никаких подробностей о задачах миссии официально не было сообщено.

Цели, для которых ВВС США собирается использовать орбитальный самолёт, в настоящее время не разглашаются. Согласно официальной версии, основной его функцией станет доставка на орбиту специальных грузов. По другим версиям, ГЗЛА Boeing X‑37 будет применяться и в разведывательных целях. Наиболее правдоподобным предназначением этого аппарата является отработка технологий для будущего космического перехватчика, позволяющего инспектировать чужие космические объекты и, если нужно, выводить их из строя кинетическим воздействием. Такое предназначение аппарата полностью соответствует документу «Национальная космическая политика США» 2006 года, провозглашающему право США частично распространить национальный суверенитет на космическое пространство.

Представительство ВВС США официально заявило, что X‑37B рассчитан на максимальное нахождение в космосе в течение 270 дней, хотя второй космический полёт продлился 468 дней и 13 часов на орбите.

Аппарат оборудован панелями солнечных батарей и литий-ионными бортовыми аккумуляторами. Приведённые значения аэродинамического качества и запаса характеристической скорости позволяют изменить наклонение начальной орбиты на величину 25-300. При этом, по ряду экспертных оценок, возможно снижение ВКС в атмосфере до высоты 50-60 км.

Полёт ВКС в плотных слоях атмосферы характеризуется неблагоприятными условиями для работы бортовых систем разведки, прицеливания, связи из-за высоких скоростных напоров, тепловых нагрузок и плазмообразования.

Средние значения ЭПР такого воздушно-космического самолёта в диапазоне длин волн λ=3-10 см, ракурсе наблюдения 90±45° (борт) и по уровню вероятности 0,5 составляют около 5-10-20 м2 (в зоне плазмообразования могут достигать до 50-100 м2). Интенсивное плазмообразование при входе ВКС в плотные слои атмосферы прогнозируется в диапазоне высот 70-50 км с дальнейшим затуханием к плотным слоям атмосферы. Поэтому, исходя из нынешнего понимания возможностей ВКС, предполагается, что орбитальный полёт будет основным режимом полёта ВКС при выполнении боевых задач. В меньшей степени боевое применение ВКС возможно и на участке схода с орбиты до входа в плотные слои атмосферы (Н=90-120 км).

В целом на ВКС может возлагаться решение транспортных задач в интересах обеспечения орбитальной группировки США, ведение разведки из космоса и проведение инспекции орбитальных объектов.

Нанесение высокоточных ударов из космоса (с орбит около 200 км) по наземным целям представляется маловероятным (стоит вспомнить, сколько прогнозов о возможностях боевого применения многоразового космического корабля «Шаттл» было сделано в 1980‑е годы!). Тем более, что подобных испытаний Х‑37 с воздействием по наземным целям с орбиты за прошедший период зарегистрировано не было.

Необходимо отметить, что такие испытания будут расцениваться как нарушение Договора о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела от 10 октября 1967 года. В соответствии со статьёй IV этого Договора «государства - участники Договора - обязуются не выводить на орбиту вокруг Земли любые объекты с ядерным оружием или любыми другими видами оружия массового уничтожения…».

В целом проведённый анализ показал, что гиперзвуковой летательный аппарат типа Boeing Х‑37 предназначен для выполнения специальных (разведывательных и транспортных) задач в космосе и обладает ограниченными возможностями боевого применения.

Планирующая головная часть Falcon HTV‑2

Ранее в США также осуществлялся ряд поисковых работ в области создания стратегических неядерных баллистических ракет (разработка МБР «Минитмен‑2» с неядерной боевой частью) в рамках проекта HAWD (Hypersonic Aerodynamic Weapon Definition).

Концепция была основана на результатах работ по созданию маневрирующей боеголовки AMaRV (Advanced Maneuvering Reentry Vehicle), которая трижды испытывалась в первой половине 1980‑х годов. Очевидно, эти испытания прошли достаточно успешно, поскольку Национальный совет по научно-исследовательским разработкам США в 2008 году рекомендовал в своём докладе использовать боеголовку AMaRV в качестве прототипа для первой ракетно-планирующей системы.

В качестве одного из вариантов такой системы рассматривалась планирующая головная часть (ПГЧ) или планирующая боеголовка (ПБГ), разработка которой была проведена в США по программе HWT (Hypersonic Weapon Technology). Технический облик этого аппарата представлял собой планирующую боеголовку, сконструированную по схеме «интегрированное корпус-крыло», и был положен в основу дальнейших разработок.

Основой для разработки ПБГ послужил гиперзвуковой летательный аппарат «Буст-Глайд» (программа SBGV - Strategic Boost Glide Vehicle, разработка которой осуществлялась ВВС), обладающий способностью совершать после разгона длительный управляемый гиперзвуковой планирующий полёт в диапазоне высот от 60 до 30 км.

Вместе с тем неоднократно отмечалось, что планирующая БГ (при успешном решении задач обнаружения, сопровождения и наведения средств ПРО) становится более уязвимой целью даже по сравнению с другими боеголовками (типа ББ МБР, ГЧ БРСД). Во‑первых, из-за больших габаритов её уязвимая площадь и ЭПР в несколько раз выше, чем у других БЦ, во‑вторых, крылья на участке планирования в атмосфере становятся основными уязвимыми отсеками, так как их разрушение (даже при боеспособном снаряжении) делает невозможным нанесение запланированного удара по объекту (рисунок 6).


По экспертным оценкам, такие планирующие головные части способны эффективно преодолевать существующую систему воздушно-космической обороны России и обладают наилучшими лётно-техническими характеристиками среди всех перспективных ГЗЛА противника.

Наиболее перспективной разработкой ГЗЛА в настоящее время является проект гиперзвукового аппарата типа «Фалькон» (Falcon), создаваемого в рамках программы HTV Агентства перспективных исследований Департамента обороны США (ДАРПА).

Боевое применение этого ГЗЛА предусматривает вывод аппарата в космос на МБР (вне зоны контроля СПРН), разгон ГЗЛА до гиперзвуковой скорости и скрытное преодоление зон ПВО над территорией страны в режиме аэродинамического планирования.

Программы и перспективы создания таких ГЗЛА были хорошо освещены в 2013 году в книге «Серебряная пуля?» Джеймса М. Эктона - содиректора программы по ядерной политике фонда Карнеги за международный мир. Было отмечено, что применение гиперзвуковых летательных аппаратов типа Falcon HTV‑2 в перспективе может обеспечить скрытное преодоление зоны обнаружения как системы ПРН, так и системы ПВО и нанесение внезапного ядерного удара по высшим звеньям государственного и военного управления РФ.

Основной чертой таких гиперзвуковых летательных аппаратов, определяющей вероятность доставки боезарядов к объекту поражения, являются высокоскоростные, интенсивно меняющиеся по модулю и направлению манёвры. Такие особенности лётно-технических характеристик планирующих боеголовок обусловлены высоким аэродинамическим качеством и высокими гиперзвуковыми скоростями атаки цели (5

Эти ГЗЛА объединили в себе те черты современного ракетного и авиационного вооружения, которые являются определяющими для эффективного преодоления современных эшелонированных систем ПВО‑ПРО. Из всех СВКН только баллистические ракеты, оснащённые ПБГ (ПГЧ) с высокими аэродинамическими характеристиками, обеспечивают практически глобальную зону поражения (доставки боезаряда) с гиперзвуковыми скоростями, сопоставимыми со скоростью МБР (БРПЛ).

При высоких гиперзвуковых скоростях и межконтинентальной дальности полёта ПБГ являются оружием высокоточной доставки неядерных боеприпасов и ядерных боезарядов малого и сверхмалого эквивалента, которые с использованием средств самонаведения и космических навигационных систем обеспечивают точность КВО=5-10 м.

Джеймсом М. Эктоном также было отмечено, что в настоящее время в этой области реализуется только одна программа - HTV‑2 и её финансирование сокращено до минимума.

Ранее был проведён ряд лётных испытаний таких ГЗЛА в рамках исследовательских программ ATV и HTV (рис. 7), которые подтвердили потенциальную возможность применения гиперзвуковых средств воздушно-космического нападения.


В процессе проведённых лётных испытаний ГЗЛА было отработано как прямое наведение планирующей головной части на атакуемый объект, так и возможные боковые манёвры аппарата относительно плоскости стрельбы. Лётные испытания проводились Агентством ДАРПА на Тихоокеанском полигоне ПРО имени Р. Рейгана. Пуск ГЗЛА проводился на испытательной баллистической трассе АБ «Ванденберг» (штат Калифорния) - боевое поле падения полигона ПРО (штат Гавайи). Продольное отклонение от расчётной траектории ГЗЛА с планированием составило около 1250 км.

Необходимо отметить, что применение для вывода таких ГЗЛА стратегических баллистических ракет даже из других позиционных районов (о. Диего-Гарсия) и районов патрулирования в море вызывает серьёзные опасения ввиду возможности срабатывания системы предупреждения о ракетном нападении РФ и угрозы нанесения ответного (ядерного) удара.

Вместе с тем то, что программой испытаний в настоящее руководит Агентство перспективных исследований ДАРПА, показывает, что испытания планирующей головной части также носят исследовательский характер и в ближне- и среднесрочной перспективе вероятность перевода этой программы в стадию опытно-конструкторской работы во многом зависит от результатов испытаний опытного образца - демонстратора технологий.

Прямой угрозы нет

Существующий уровень проработки всех приведённых образцов ГЗЛА - гиперзвуковой крылатой ракеты типа Boeing Х‑51А, воздушно-космического самолёта Boeing Х‑37, планирующей головной части Falcon HTV‑2 - явно недостаточен для перевода указанных научно-исследовательских программ в стадию ОКР.

Общее снижение темпов разработки указанных гиперзвуковых летательных аппаратов и отсутствие утверждённой концепции боевого применения ГЗЛА с неядерным оснащением также позволяет предположить, что на ближайшую перспективу в составе стратегических наступательных вооружений США основными средствами «быстрого глобального удара» останутся стратегические баллистические и крылатые ракеты.

Приведённый обзор проблем, выявленных при лётных испытаниях гиперзвуковых летательных аппаратов в США, показывает, что создание аналогичных образцов вооружения в РФ нецелесообразно. В этом случае мы повторяем печальный опыт создания аналога лазерного авиационного комплекса (ABL), который после ряда успешных лётных экспериментов в США был вначале переведён из образца вооружения в исследовательскую лабораторию, а потом и вовсе отправлен на «кладбище самолётов».


Первый полёт Boeing X-48C


Холодная война, которая проходила между США и СССР в 1946-1991 годах, давно закончилась. По крайней мере так считают многие эксперты. Однако гонка вооружений не останавливалась ни на минуту, и даже сегодня она находится в стадии активного развития. Несмотря на то что сегодня основные угрозы для страны представляют террористические группировки, отношения между мировыми державами тоже являются напряженными. Все это создает условия для развития военных технологий, одной из которых является гиперзвуковой самолет.

Необходимость

Отношения между США и Россией сильно обострены. И хотя на официальном уровне США в России называют партнерской страной, многие политические и военные эксперты утверждают, что между странами идет негласная война не только на политическом фронте, и но и на военном в виде гонки вооружений. К тому же, США активно применяет НАТО для окружения России своими системами ПРО.

Это не может не беспокоить руководство России, которая уже достаточно давно приступила к разработке летательных аппаратов-беспилотников, превосходящих гиперзвуковую скорость. Эти беспилотники можно оснастить ядерной боеголовкой, и они беспрепятственно смогут доставить бомбу в любую точку мира, причем, достаточно быстро. Подобный гиперзвуковой самолет уже создан - это лайнер "Ю-71", который сегодня тестируется в строгой секретности.

Развитие гиперзвукового оружия

Впервые испытывать самолеты, которые могли летать со скоростью звука, начали в 50-х годах 20 века. Тогда это еще было связано с так называемой Холодной войной, когда две развитые державы (СССР и США) стремились обогнать друг друга в гонке вооружений. Первым проектом стала система "Спираль", которая представляла собой компактный орбитальный самолет. Он должен был составить конкуренцию и даже превзойти гиперзвуковой самолет США X-20 Dyna Soar. Также советский самолет должен был иметь способность развивать скорость до 7000 км/час и при этом не разваливаться в атмосфере при перегрузках.

И хотя советские ученые и конструкторы старались воплотить в жизнь подобную идею, не удалось даже приблизиться к заветным характеристикам. Опытный образец даже не взлетел, однако правительство СССР облегченно вздохнуло, когда американский самолет тоже провалился в ходе испытаний. Технологии того времени, в том числе в отрасли авиации, были бесконечно далеки от нынешних, поэтому создание самолета, который бы мог в несколько раз превышать скорость звука, было обречено на провал.

Впрочем, в 1991 году было проведено испытание самолета, который мог развивать скорость, превышающую скорость звук. Это была летающая лаборатория "Холод", созданная на базе ракеты 5В28. Испытание прошло успешно, и тогда самолет смог развить скорость 1900 км/час. Несмотря на наличие прогресса, разработку после 1998 года прекратили в связи с экономическим кризисом.

Технологии 21 века

Не существует точной и официальной информации о разработке гиперзвуковых самолетов. Впрочем, если собрать материалы из открытых источников, то можно сделать вывод, что подобные разработки осуществлялись сразу в нескольких направлениях:

  1. Создание боевых блоков для межконтинентальных баллистических ракет. Их масса превышала массу стандартных ракет, однако за счет возможности маневрирования в атмосфере перехватить их средствами ПРО невозможно или, как минимум, чрезвычайно сложно.
  2. Разработка комплекса "Циркон" - еще одно направление развития технологии, которая базируется на использовании сверхзвуковой ПРК "Яхонт".
  3. Создание комплекса, ракеты которого могут превышать скорость звука в 13 раз.

Если все данные проекты объединятся в одном холдинге, то совместными усилиями может быть создана ракета воздушного, наземного или корабельного базирования. Если проект Prompt Global Strike, создаваемый в США, будет успешным, то американцы получат возможность поражать любую точку мира в течение одного часа. Россия сможет защититься только технологиями собственной разработки.

Американскими и британскими специалистами фиксируются испытания сверхзвуковых ракет, которые могут развивать скорость до 11200 км/час. С учетом столь высокой скорости сбить их практически невозможно (на это не способна ни одна ПРО в мире). Более того, они даже слежке поддаются крайне сложно. Информации о проекте, который иногда фигурирует под названием "Ю-71", очень мало.

Что известно об российском гиперзвуковом самолете "Ю-71"?

С четом того, что проект засекречен, информации о нем очень мало. Известно, что данный глайдер является частью ракетной сверхзвуковой программы, и в теории он способен долететь до Нью-Йорка за 40 минут. Конечно, эта информация не имеет официального подтверждения и существует на уровне догадок и слухов. Но с учетом того, что российские сверхзвуковые ракеты могут достигать скорости 11200 км/час, подобные выводы кажутся вполне логичными.

По разным источникам гиперзвуковой самолет "Ю-71":

  1. Обладает высокой маневренностью.
  2. Может планировать.
  3. Способен развивать скорость свыше 11000 км/час.
  4. Может выходить в космос при осуществлении полета.

Заявления

На данный момент испытания гиперзвукового самолета России "Ю-71" еще не закончены. Однако некоторые эксперты утверждают, что к 2025 году Россия, возможно, получит данный сверхзвуковой глайдер, и его можно будет оснастить ядерным вооружением. Подобный самолет будет поставлен на вооружение, и в теории он будет способным в течение всего одного часа нанести точечный ядерный удар в любой точке планеты.

Представитель России при НАТО Дмитрий Рогозин заявил, что некогда самая развитая и передовая промышленность СССР отстала от гонки вооружений в течение последних десятилетий. Однако совсем недавно армия начала возрождаться. Устаревшая советская техника заменяется новыми образцами уже российских разработок. К тому же, застрявшее в 90-х годах в виде проектов на бумагах оружие пятого поколение обретает видимые очертания. По словам политика, новые образцы российского вооружения могут удивить мир непредсказуемостью. Вполне вероятно, что Рогозин имеет в виду новый гиперзвуковой летательный аппарат "Ю-71", который может нести ядерный боезаряд.

Считается, что разработка данного самолета началась в 2010 году, однако в США о нем узнали лишь в 2015. Если информация о его технических характеристик является правдивой, то Пентагону предстоит решать сложную задачу, так как используемые в Европе и на своей территории ПРО не смогут оказать противодействие подобному самолету. К тому же, США и многие другие страны окажутся просто беззащитными перед подобным оружием.

Прочие функции

Кроме возможности нанесения по противнику ядерных ударов, глайдер благодаря мощному современному оборудованию радиоэлектронной борьбы сможет производить разведку, а также выводить из строя устройства, оснащенные радиоэлектронной аппаратурой.

Если верить донесениям НАТО, то приблизительно с 2020 по 2025 годы в армии РФ может появиться до 24 подобных самолета, которые смогут незаметно пересечь границу и всего несколькими выстрелами уничтожить целый город.

Планы по развитию

Конечно, нет никаких данных по поводу принятия на вооружение перспективного самолета "Ю-71", однако известно, что его разрабатывают с 2009 года. При этом аппарат сможет не только летать по прямой траектории, но и маневрировать.

Именно маневренность на гиперзвуковых скоростях станет особенностью летательного аппарата. Доктор военных наук Константин Сивков утверждает, что межконтинентальные ракеты могут развивать сверхзвуковую скорость, но при этом они действуют как обычные баллистические боеголовки. Следовательно, их траектория полета легко рассчитывается, что дает возможность системе ПРО их сбивать. А вот управляемые летательные аппараты представляют серьезную угрозу противнику, поскольку их траектория является непредсказуемой. Следовательно, невозможно определить, в какой точке будет выброшена бомба, а так как точку сброса определить нельзя, то и траектория падения боеголовки не просчитывается.

В Туле 19 сентября 2012 года на заседании военно-промышленной комиссии Дмитрий Рогозин заявил, что вскоре следует создать новый холдинг, задача которого будет заключаться в развитии гиперзвуковых технологий. Сразу же были названы предприятия, которые войдут в состав холдинга:

  1. "Тактическое ракетное вооружение".
  2. "НПО машиностроения". На данный момент предприятие разрабатывает сверхзвуковые технологии, однако на данный момент компания находится в составе структуры Роскосмоса.
  3. Следующим членом холдинга должен стать концерн "Алмаз-Антей", который нынче занимается разработкой технологий воздушно-космической и противоракетной отрасли.

Рогозин считает, что подобное слияние необходимо, однако юридические аспекты не позволяют ему состояться. Также отмечается, что создание холдинга не предполагает поглощение одной компанией другой. Это именно слияние и совместная работа всех предприятий, что позволит ускорить процесс развития гиперзвуковых технологий.

Председатель совета при Минобороны РФ Игорь Коротченко также поддерживает идею создания холдинга, который бы занимался разработкой гиперзвуковых технологий. По его словам, новый холдинг действительно необходим, ведь он позволит направить все усилия на создание перспективного вида вооружения. Обе компании обладают большими возможностями, однако по отдельности они не смогут достичь тех результатов, которые возможны при совмещении усилий. Именно вместе они смогут внести вклад в развитие оборонного комплекса РФ и создать самый быстрый самолет в мире, скорость которого превзойдет ожидания.

Оружие как инструмент политической борьбы

Если к 2025 году на вооружении будут стоять не только гиперзвуковые ракеты с ядерными боеголовками, но и глайдеры "Ю-71", то это серьезно укрепит политические позиции России в ходе переговоров с США. И это совершенно логично, ведь все страны в ходе переговоров действуют с позиции силы, диктуя противоположной стороне выгодные ей условия. Равные переговоры между двумя странами возможны только при наличии мощного вооружения у обоих сторон.

Владимир Путин в ходе выступления на конференции "Армия-2015" заявил, что ядерные силы получают новые межконтинентальные ракеты в количестве 40 штук. Это оказались именно гиперзвуковые ракеты, и они могут на данный момент преодолевать существующие системы ПРО. Член экспертного совета военно-промышленной комиссии Виктор Мураховский подтверждает, что с каждым годом МБР совершенствуются.

Также Россия проводит испытания и разработку новых крылатых ракет, которые способны летать на гиперзвуковых скоростях. Они могут подходить к цели на сверхмалых высотах, что делает их практически незаметными для радаров. Более того, современные комплексы ПРО, находящиеся на вооружении НАТО, не могут поразить подобные ракеты из-за низкой высоты полета. К тому же, в теории они способны перехватывать цели, движущиеся при скорости до 800 метров в секунду, а скорость самолета "Ю-71" и крылатых ракет намного выше. Это делает системы ПРО НАТО почти бесполезными.

Проекты других стран

Известно, что Китай и США также разрабатывают аналог российскому гиперзвуковому самолету. Характеристики моделей противников пока что неясны, но уже можно считать, что китайская разработка способна составить конкуренцию российскому летательному аппарату.

Известный под названием Wu-14 китайский самолет испытывался в 2012 году, и еще тогда он смог развить скорость свыше 11000 км/час. Впрочем, о вооружении, которое способен нести этот аппарат, нигде не говорится.

Что касается американского беспилотника Falcon HTV-2, то он был испытан несколько лет тому назад, но на 10 минуте полета он разбился. Однако до него тестировался гиперзвуковой самолет Х-43А, которым занимались инженеры NASA. В ходе испытаний он показал фантастическую скорость - 11200 км/час, что превышает скорость звука в 9.6 раза. Опытный образец был испытан в 2001 году, однако тогда в ходе испытаний его уничтожили из-за того, что тот вышел из под контроля. Но в 2004 году аппарат был успешно испытан.

Подобные испытания Россией, Китаем и США ставит под сомнение эффективность современных систем ПРО. Внедрение гиперзвуковых технологий в военно-промышленной отрасли уже сегодня производит настоящую революцию в военном мире.

Заключение

Конечно, военно-техническое развитие России не может не радовать, и наличие подобного самолета на вооружение армии - это большой шаг при улучшении обороноспособности страны, однако глупо полагать, что другие мировые державы не предпринимают попытки в разработке подобных технологий.

Даже сегодня при свободном доступе к информации через интернет, мы очень мало знаем про перспективные разработки отечественного вооружения, а описание "Ю-71" известно только по слухам. Следовательно, мы и близко не можем знать, какие технологии прямо сейчас разрабатываются в других странах, включая Китай и США. Активное развитие технологий в 21 веке позволяет быстро изобретать новые виды топлива и применять незнакомые ранее технические и технологические приемы, поэтому развитие летательных аппаратов, в том числе военных, идет очень быстро.

Стоит отметить, что развитие технологий, позволяющих достичь скорости самолета, превышающей в 10 раз скорость звука, отразится не только в военной, но и гражданской сфере. В частности, такие известные производители лайнеров как Airbus или Boeing, уже заявляли о возможности создания гиперзвуковых самолетов для осуществления пассажирских авиаперевозок. Конечно, подобные проекты пока что только в планах, но вероятность разработки таких самолетов уже сегодня достаточно велика.

Loading...Loading...