Режимы резания. Подачи при черновом обтачивании стали твердосплавными резцами без дополнительной режущей кромки. Основы теории резания металлов.Выбор режимов резания Как определить подачу на токарном станке

Резание резцами производится с выбранной скоростью движения подачи при определенной глубине резания и с допустимой (оптимальной) скоростью резания. Режимы резания - это совокупность указанных величин. При выборе режимов точения целесообразно использовать материалы справочника «Режимы резания металлов», а именно: «Общие указания по расчету режимов резания» (с. 7...8), условные обозначения величин, относящихся ко всем разделам справочника (с. 9...10), а также материалы, приведенные в разд. 1 «Режимы резания на токарных станках», ссылки на которые будут даны при выборе режимов резания. В карте T-1 разд. 1 на листах 1...3 подразд. «Токарные станки» изложена «Методика расчета режимов резания при обработке на одношпиндельных токарных станках» (с. 11...13).

Глубина резания t зависит от припуска на обработку и вида обработки (черновое или чистовое точение). Обработку ведут с возможно меньшим числом проходов.

Рассмотрим последовательность определения режимов резания при точении на одношпиндельных станках.

1. Определение длины рабочего хода L p.х суппорта на рабочей подаче, мм (или каждого суппорта, если их несколько), исходя из значений L, рассчитанных для отдельных инструментов суппорта и последовательности их работы. Расчет проводим для одного резца, т.е. L р.х = L:

L = L p + L п + L д,

где L p - длина резания, мм; L п - длина подвода, врезания, перебега инструмента, мм; L д - дополнительная длина хода, обусловленная особенностями наладки и конфигурации детали, мм.

2. Назначение подачи суппорта на оборот шпинделя S o , мм/об, исходя из обрабатываемого материала, вида инструмента, глубины резания t, требований к качеству обработки, в том числе к шероховатости поверхности (при чистовой обработке).

Например, подача на оборот S o при черновом точении проходными резцами приведена в табл. 2.1.

Затем производят уточнение подач по паспорту станка, если он содержит подачи на оборот.

Таблица 2.1. Подача на оборот S o при черновом точении проходными, подрезными и расточными резцами

Примечания.

  1. Приведенные значения подач, отражающие производственный опыт, зависят от жесткости технологической системы: большие подачи назначают при большей жесткости.
  2. СМП - сменные многогранные пластины.
  3. При назначении подач необходимо учитывать следующие ограничения:
    • при прерывистом резании твердосплавными СМП S о ≤ 0,4 мм/об;
    • величины подачи должны быть не более 0,5 радиуса при вершине твердосплавных резцов.
  4. При работе резца с СМП из режущей керамики при врезании и выходе резца целесообразно уменьшать подачи для повышения надежности работы инструмента.

3. Определение стойкости Т р инструмента, мин (или группы лимитирующих инструментов при многоинструментальной обработке) производится по табл. 2.2. Стойкость T р инструмента, мин (лимитирующего), для которого ведется расчет скорости резания, определяется по формуле

Т р = Т м πλ,

где Т м - нормативная стойкость инструментов в минутах основного времени обработки; λ - коэффициент времени резания.

Таблица 2.2. Нормативная стойкость Тм инструментов

Коэффициент времени резания λ рассчитывается как отношение числа оборотов шпинделя за время резания для рассматриваемого инструмента к общему числу оборотов шпинделя за время рабочего цикла.

При работе одним суппортом λ = L p /L p.х. ,Если очевидно, что коэффициент времени резания λ > 0,7, то его можно принимать равным единице и не учитывать.

4. Расчет скорости резания v, м/мин, и частоты вращения шпинделя n, об/мин.

В данном примере расчет производят для станков с постоянной частотой вращения шпинделя в течение рабочего цикла, исходя из известных параметров: угла в плане φ, глубины резания t, подачи на оборот S o и принятой стойкости инструмента Т р.

Определение исходных значений v инструментов со стойкостью Т р осуществляют по табл. 2.3).

Скорость резания v 1 для сталей и чугунов определяется по формуле

v = v табл К 1 K 2 К 3 ,

где v табл - скорость по таблице, м/мин; К 1 , К 2 , К 3 , - коэффициенты, зависящие соответственно от марки и твердости обрабатываемого материала, группы твердого сплава и стойкости инструмента Т р.

Таблица 2.3. Точение сталей
Скорость резания v табл при точении проходными, подрезными и расточными резцами

Значения коэффициентов К 1 , К 2 , K 3 приведены в той же карте. Расчет значения n, соответствующего исходному значению v, производится по формуле

n = 1000 v/(πD),

где D - диаметр заготовки, мм.

Указанное в паспорте станка значение не должно превышать меньшее из рассчитанных значений n более чем на 10...15 %. Если в паспорте станка регламентированы значения подач S M , мм/мин, то надо определить расчетное значение S M = S o n и уточнить его по паспорту станка.

5. Расчет основного времени обработки Т о, мин, при постоянных подаче S о и частоте вращения п шпинделя производится по формуле

Тo = L p.x /(S o n),

где L p.x - длина рабочего хода суппорта, мм.

6. Корректирование режимов резания. В случае когда основное время Т o , рассчитанное на этапе 5, меньше основного времени, соответствующего заданной производительности, следует рассмотреть целесообразность понижения режимов резания для повышения надежности работы, улучшения технико-экономических показателей при обеспечении заданной производительности и качества; при этом исходными данными являются два значения основного времени Т о, рассчитанного на этапе 5 и соответствующего заданной производительности.

Таблица 2.4. Сила резания Р.табл

7. Выполнение проверочных расчетов по мощности резания состоит из двух этапов.

7.1. Сила резания определяется по формуле

Р z = Р zтабл t,

где Р zтабл - главная составляющая силы резания, кН (табл. 2.4); t - глубина резания, мм.

7.2. Мощность резания, кВт, определяется по формуле

где v - скорость резания, м/мин.

Проверка мощности двигателя производится по пиковой нагрузке и нагреву.

Нарезание резьбы на токарных станках

Рассмотрим способы обработки резьб резцами и круглыми плашками.

Резцами нарезают наружные резьбы диаметром d H = 1...1000 мм, шагом Р = 0,25...100 мм, 6...8 степени точности. Наибольшая производительность обработки в серийном производстве, в том числе на станках с ЧПУ, - 5 шт./мин для резьб с минимальными диаметром, шагом и длиной не более 2d H .

Таблица 2.5. Определение общей глубины резания t 1 и числа проходов i при точении наружных и внутренних метрических резьб на деталях из конструкционных сталей

Таблица 2.6. Радиальная подача на проход S при нарезании наружной метрической резьбы на деталях из конструкционных сталей

Таблица 2.7. Скорость резания v при резьботочении

Расчет режимов резьбообработки резцами завершается определением основного времени.

При точении резьбы основное время

Т o = L p.х iq/(Pn),

где L p.x - длина рабочего хода резца, мм; Р - шаг обрабатываемой резьбы, мм; п - частота вращения заготовки, об/мин, определяемая по формуле

n = 1000v/(πD),

исходя из табличной скорости v с учетом возможностей станка, определяемым по паспортным данным; i - число проходов; q - число заходов резьбы.

Круглыми плашками нарезают резьбы диаметром d H = 0,2...72 мм, шагом Р = 0,08...3 мм, 5...8-й степеней точности. Наибольшая производительность - 5 шт./мин.

Скорость резания v, стойкость инструмента Т р, крутящий момент М кр, основное время Т o при резьбообработке круглыми плашками могут быть определены по карте РГ-1 справочника .

Контрольные вопросы

  1. Какие величины составляют режимы резания при обработке деталей точением?
  2. Какие способы обработки резьб применяют на токарных станках?
  3. Как выбрать режимы резания для чернового точения деталей из конструкционных сталей по приведенным таблицам?
  4. Приведите пример выбора режимов резания при резьботочении.

В понятие «режимы резания» входят глубина резания t, подача S и скорость резания V.

Токарная обработка должна вестись на таких режимах, при которых наиболее полно используются мощность станка и стойкость инструмента, обеспечивается высокое качество обработки при минимальной ее себестоимости и создаются безопасные условия работы.

При назначении режимов резания сначала устанавливают глубину резания, затем выбирают подачу и в зависимости от них определяют скорость резания.

Глубина резания определяется величиной припуска на обработку. Глубина резания оказывает большое влияние на силы резания, поэтому иногда возникает необходимость разделить припуск на несколько проходов.

Суммарный припуск разделяется следующим образом: 60%—на черновую обработку, 20—30 % — на получистовую и 10—20 % —на чистовую. При чистовой обработке глубина резания назначается в зависимости от необходимой степени точности и качества поверхности.

Величина подачи ограничивается силами, действующими в процессе резания: эти силы могут привести к поломке режущего инструмента, деформации и искажению формы заготовки, поломке станка. Подача выбирается максимально возможной, так как она непосредственно влияет на производительность обработки.

Обычно подача назначается из таблиц справочников по режимам резания, составленным на основе специальных исследований и изучения опыта работы машиностроительных заводов. Выбранная подача согласуется с кинематикой станка. При этом выбирается ближайшая меньшая из имеющихся на станке. Выбрать величину подачи можно из табл. 16—19.

Скорость резания зависит от материала режущей части резца, обрабатываемого материала, глубины резания, подачи и других факторов. Чем большую скорость резания позволяет достичь инструмент при одной и той же стойкости, тем выше его режущие свойства, тем более он производителен.

Стойкость резцов из быстрорежущих сталей уменьшается с увеличением скорости резания. Рациональная скорость резания для этих резцов — от 20 до 50 м/мин.

Стойкость резцов, оснащенных пластинками твердых сплавов, находится в более сложной зависимости от скорости резания. Рациональная скорость резания для этих резцов находится в пределах V=80—140 м/мин при стойкости T=30—60 мин. Скорость резания уменьшается с увеличением сопротивления резанию, которое приводит к возникновению больших сил, высокой температуры, интенсивному износу режущего инструмента.

С большей скоростью резания обрабатываются автоматные стали, цветные и легкие сплавы. Алюминий обрабатывается со скоростью в 5—6 раз большей, чем скорость обработки углеродистой конструкционной стали.

Подача и глубина резания определяют нагрузку на резец и температуру резания. С увеличением подачи и глубины резания интенсивнее износ резца, что ограничивает скорость резания. Для достижения большей производительности выгоднее работать с большими сечениями среза за счет уменьшения скорости резания. Например, при увеличении подачи в 2 раза (с 0,3 до 0,6 мм/об) скорость резания необходимо уменьшить на 20—25 %. При удвоении глубины резания скорость резания должна быть уменьшена на 10—15 %. На практике скорость резания увеличивают после того, как достигнуты предельные величины по глубине резания и подаче.

Таблица 16 Подачи при черновом обтачивании стали твердосплавными резцами без дополнительной режущей кромки

Примечания:

1. Меньшие значения подач соответствуют меньшим размерам державки резца и более прочным обрабатываемым материалам.

2. При обработке прерывистых поверхностей, т. е. при работе с ударными нагрузками, табличные значения подач следует умножать на коэффициент 0,75—0,85.

3. При обработке жаропрочных сталей и сплавов подачи свыше 1 мм/об не применять.

4. При обработке с глубиной резания до 8 мм быстрорежущими резцами табличные значения подач можно увеличить в 1,1—1,3 раза.

При черновом точении сталей быстрорежущими резцами обильное охлаждение смазочно-охлаждающими жидкостями (8— 12 л/мин) повышает скорость резания на 20—30 %. При чистовом точении интенсивность охлаждения 4—6 л/мин обеспечивает повышение скорости резания на 8-10%.

Для твердосплавного инструмента особенно необходимо постоянное охлаждение, так как в случае прерывистого охлаждения могут образоваться трещины на пластинке и резец выйдет из строя.

Таблица 17 Подачи при чистовом обтачивании твердосплавными и быстрорежущими резцами



Примечания:

1. Значения подач даны для резцов со вспомогательным углом в плане =10—15°, при уменьшении последнего до 5° значения подач могут быть повышены на 20 %.

2. При чистовой обработке стали в зависимости от скорости резания величина подачи вычисляется умножением на поправочный коэффициент: при скорости резания до 50 м/мин принимать коэффициент =0,85, при скорости резания от 50 до 100 м/мин — 1,0, при скорости выше 100 м/мин — 1,2.

В зависимости от прочности стали величину подачи находят умножением на поправочный коэффициент:

при σ b до 50 кгс/мм 2 (0,49*10 5 Па) коэффициент 0,7;

при σ b от 50 до 70 кгс/мм 2 (0,49*10 5 Па -0,68*10 5 Па.)-0,75;

при σ b от 70 до 90 кгс/мм 2 (0,68*10 5 Па - 0,88*10 5 Па) -1,0;

при σ b от 90 до 110 кгс/мм 2 (0,88*10 5 Па - 1,07* 10 5 Па.) - 1,25.

Допустимая величина износа резцов определяет выбор скорости резания.

При выборе скорости резания пользуются нормативными данными, приведенными в табл. 20—24. При этом необходимо учитывать конкретные условия работы.

Таблица 18 Подачи при черновом обтачивании стали и чугуна минералокерамичёскими резцами


Примечание: * 75 кгс/мм 2 = 0,73*10 5 Па.

Принятые режимы резания проверяются по мощности электродвигателя станка. При этом определяется мощность, необходимая для работы с выбранными режимами, и сравнивается с фактической мощностью электродвигателя. Если мощность электродвигателя оказывается недостаточной, необходимо понизить скорость резания.

Пример определения режимов резания с помощью справочных таблиц

Исходные данные:

обрабатываемая заготовка — валик D = 80 мм,

материал — сталь 45, σ b = 85 кгс/мм 2 (σ b =0,8*10 5 Па.) ,

резец —прямой проходной, оснащенный пластинкой из твердого сплава Т5К10, параметры φ=60°, φ 1 =30°, r= 1,0 мм, сечение 16X25, заданная стойкость 60 мин,

припуск на обработку 3 мм, шероховатость поверхности Rz = 20.

Станок 16К20 (N = 10 кВт, n=0,8).

Таблица 19 Подачи при чистовом обтачивании стали и чугуна минералокерамическими резцами


Примечание. В зависимости от прочности обрабатываемого материала величину подачи находят умножением на поправочный коэффициент:

при σ b до 50 кгс/мм 2 (0,49*10 5 Па) коэффициент 0,70;

при σ b от 50 до 70 кгс/мм 2 (0,49*10 5 Па-0,68*10 5 Па) - коэффициент 0,75;

при σ b от 70 до 90 кгс/мм 2 (0,68*10 5 Па-0,88*10 5 Па) - коэффициент 1,00;

при σ b от 90 до 110 кгс/мм 2 (0,88*10 5 Па-1,07*10 5 Па)- коэффициент 1,25.

Последовательность определения режимов резания:

1. Назначаем глубину резания. Учитывая, что требования к шероховатости поверхности невысокие, снимаем припуск за один проход: t = 3 мм.

2. Из справочной табл. 17 выписываем значение подачи, обеспечивающей заданную величину шероховатости поверхности: S = 0,3— —0,45 мм/об. Принимаем имеющееся в паспорте станка значение 5 = 0,4 мм/об.

3. По табл. 20 находим значение скорости резания. При глубине резания t = 3 мм и подаче 0,3 мм/об V табл. = 198 м/мин, а при подаче 0,5 мм/об V табл.= 166 м/мин. Принимаем среднее значение для подачи 0,4 мм/об V табл.=182 М/МИН.

По табл. 22 находим поправочный коэффициент для σ b = 85 кгс/мм 2: K2 = 0,88.

Оптимальная скорость резания определяется из произведения V = V табл.* К2= 182*0,88= 160 м/мин

4. Определяем частоту вращения шпинделя:

Уточняем по паспортным данным станка n = 630 об/мин.

Таблица 20 Скорость резания при черновом обтачивании углеродистой, кремнистой, хромоникелевой сталей и стального литья резцами с пластинками из твердого сплава


Примечание. Значения скоростей резания V даны для следующих условий обработки:

стойкость резца T—60 мин;

резец без дополнительной режущей кромки φ 1 >0;

обрабатываемый материал — сталь с пределом прочности 70—80 кгс/мм 2 (0,68*10 5 Па - 0,78*10 5 Па.)

материал резца — твердый сплав Т15К6;

главный угол в плане φ —45°.

Для измененных условий работы см. поправочные коэффициенты в табл. 22.

Таблица 21 Скорость резания при чистовом обтачивании углеродистой, хромистой, хромоникелевой сталей и стального литья твердосплавными резцами без дополнительной режущей кромки


Таблица 22 Поправочные коэффициенты скорости резания твердосплавными резцами с углом φ>0

Таблица 23 Скорость резания при черновом обтачивании серого чугуна твердосплавными резцами без дополнительной режущей кромки


Примечание. Поправочные коэффициенты см. в табл. 22.

Таблица 24 Скорость резания при чистовом обтачивании серого чугуна твердосплавными резцами без дополнительной режущей кромки


Примечание. Поправочные коэффициенты см. в табл. 22.

Понятие о припуске на обработку. Детали машин, обрабатываемые на металлорежущих станках, изготавливаются из отливок, поковок, кусков прокатанного металла и других заготовок. Деталь получает требуемые форму и размеры после того, как с заготовки будут срезаны все излишки материала или, как говорят припуски, получившиеся при ее изготовлении.

Припуском (общим) называется слой металла, который необходимо удалить с заготовки для получения детали с окончательно отработанном виде.

Некоторые детали обрабатываются последовательно на нескольких станках, на каждом из которых снимается только часть общего припуска. Так, например, детали, диаметральные размеры которых должны быть очень точными, а поверхности иметь весьма малую шероховатость, обрабатывают предварительно на токарных, а окончательно на шлифовальных станках.

Слой металла, снимаемый на токарном станке, называется припуском на токарную обработку . При обработке цилиндрических деталей различают - припуск на сторону и припуск на диаметр. Припуск на диаметр равен удвоенной величине припуска на сторону. Он может определяться как разность диаметров в одном и том же сечении до и после обработки.

Часть металла, снятая (срезанная) с заготовки в процессе ее обработки, называется стружкой .

Клин как основа любого режущего инструмента. Режущие инструменты, применяемые при обработке деталей на станках, в частности токарных, очень разнообразны, но сущность работы их одинакова. Каждый из этих инструментов является клином, устройство и работа которого общеизвестны.

Нож посредством которого мы затачиваем карандаш, в поперечном сечении имеет форму клина. Столярная стамеска также представляет собой клин с острым углом между его боковыми сторонами.

Наиболее употребительный инструмент при обработки детали на токарном станке - это резец. Сечение рабочей части резца также имеет форму клина.

Рис. №1 Клин как основа любого режущего инструмента

Движения резания при точении. На рис.2 схематически показано обтачивание детали 1 резцом 2. Деталь при этом вращается по стрелке υ , а резец перемещается по стрелке s и снимает с детали стружку. Первое из этих движений является главным . Оно характеризуется скоростью резания. Второе движение - движение подачи .

Рис. №2 Движения и элементы резания при точении

Скорость резания. Каждая точка обрабатываемой по поверхности детали (рис.2), например точка А, проходит в единицу времени, например в одну минуту, некоторый путь. Длина этого пути может быть больше или меньше в зависимости от числа оборотов в минуту детали и от ее диаметра и определяет собой скорость резания.

Скорость резания называется длина пути, который проходит в одну минуту точка обрабатываемой поверхности детали относительно режущей кромки резца. Скорость резания измеряется в метрах в минуту и обозначается буквой υ . Для краткости вместо слов "метров в минуту" принять писать м / мин.

Скорость резания при точении находится по формуле

υ = πDn / 1000

где υ - искомая скорость резания в м / мин; π - отношение длины окружности к ее диаметру, равное 3,14; D - диаметр обрабатываемой поверхности детали в мм.; n - число оборотов детали в минуту. Произведение πDn в формуле должно быть разделено на1000, чтобы найденная скорость резания была выражена в метрах. Формула эта читается так: скорость резания равна произведению длины окружности обрабатываемой детали на число оборотов ее в минуту, разделенному на1000.
Подача. Перемещение резца при резании в зависимости от условий работы может происходить быстрее или медленнее и характеризуется, как это отмечено выше, подачей.
Подачей называется величина перемещения резца за один оборот обрабатываемой детали. Подача измеряется в миллиметрах на один оборот детали и обозначается буквой s (мм/об).
Подача называется продольной , если перемещение резца происходит параллельно оси обрабатываемой детали, и поперечной , когда резец перемещается перпендикулярно к этой оси.
Глубина резания. При перемещении резец снимает с детали слой материала, толщина которого характеризуется глубиной резания.
Глубиной резания
называется толщина снимаемого слоя материала, измеренная по перпендикуляру к обработанной поверхности детали. Глубина резания измеряется с миллиметрах и обозначается буквой t . Глубиной резания при наружном обтачивании является половина разности диаметров обрабатываемой детали до и после прохода резца. Таким образом, если диаметр детали до обтачивания был 100мм., а после одного прохода резца стал равен 90мм., то это значит что глубина резания была 5мм.
Срез, его толщина, ширина и площадь. В следствии остаточной деформации стружки, происходящей в процессе ее образования, ширена и особенно толщина ее получаются больше размеров b и a на рис. 2. Длина стружки оказывается меньше соответственного размера обрабатываемого участка поверхности детали. Поэтому площадь ƒ, заштрихованная на рис. 2 и называемая срезом, не отражает поперечного сечения стружки, снимаемой в этом случае.
Срезом называется поперечное сечение слоя металла, снимаемого при данной глубине резания и подаче. Размеры среза характеризуются его толщиной и шириной.
Толщиной среза называется расстояние между крайними точками работающей части режущей кромки резца. Ширина среза измеряется в миллиметрах (мм) и обозначается буквой b . Четырехугольник, заштрихованный на рис. 2, изображает площадь среза.
Площадь среза равна произведению подачи на глубину резания. Площадь среза измеряется в мм² , обозначается буквой ƒ и определяется по формуле ƒ= s t , где ƒ - глубина резания в мм.
Поверхности и плоскости в процессе резания. На обрабатываемой детали при снятии с нее стружки резцом различают поверхности: обрабатываемую, обработанную и поверхность резания (рис. 3).

Рис. 3. Поверхность и плоскость в процессе резания

Обрабатываемой поверхностью называется та поверхность, с которой снимается стружка.
Обработанной поверхностью называется поверхность детали, полученная после снятия стружки.

Поверхностью резания называется поверхность, образуемая на обрабатываемой детали непосредственно режущей кромкой резца.

Для определения углов резца установлены понятия: плоскость резания и основная плоскость.

Плоскость резания называется плоскость, касательная к поверхности резания и проходящая через режущую кромку резца.

Основной поверхностью называется плоскость, параллельная продольной и поперечной подачам. Она совпадает с опорной поверхностью резца.

Части резца и элементы его головки. Резец (рис. 4) состоит из головки, т.е. рабочей части, и тела, служащего для закрепления резца.

Рис. 4. Части резца и элементы его головки.

Поверхностям и другим элементам головки резца присвоены следующие названия.
Передней поверхностью резца называется та поверхность, по которой сходит стружка.
Задними поверхностями резца называются поверхности, обращенные к обрабатываемой детали, причем одна из них называется главной, а другая вспомогательной.
Режущими кромками резца называются линии, образованные пересечением передней и задних поверхностей его. Режущая кромка, выполняющая основную работу резания, называется главной. Другая режущая кромка резца называется вспомогательной.
Из рис. 4 видно, что главной задней поверхностью резца является поверхность, примыкающая к его главной режущей кромке, а вспомогательной - примыкающая к вспомогательной режущей кромке.
Вершиной резца называется место сопряжения главной и вспомогательной кромкой. Вершина резца может быть острой, плоскосрезанной или закругленной.
Углы резца. Главными углами резца являются главный задний угол, передний угол, угол заострения и угол резания. Эти углы измеряются в главной секущей плоскости (рис. 5).
Главная секущая плоскость есть плоскость, перпендикулярная к главной режущей кромке и основной плоскости.
Главным задним углом называется угол между главной задней поверхностью резца и плоскостью резания. Этот угол обозначается греческой буквой α (альфа). Угол заострения называется угол между передней и главной задней поверхностями резца. Этот угол обозначатся греческой буквой β (бета).
Передним углом называется угол между передней поверхностью резца и плоскостью, проведенной через главную режущую кромку перпендикулярно к плоскости резания. Этот угол обозначается буквой γ (гамма).
Угол резания называется между передней поверхностью резца и плоскостью резания. Этот угол обозначается греческой буквой δ(дельта)>

.

Рис. 5. Углы токарного резца.

Кроме перечисленных, различают следующие углы резца: вспомогательный задний угол, главный угол в плане, вспомогательный угол в плане, угол при вершине резца и угол наклона главной режущей кромки.
Вспомогательным задним углом называется угол между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно к основной плоскости. Этот угол измеряется во вспомогательной секущей плоскости, перпендикулярной к вспомогательной режущей кромке, и основной плоскости и обозначается α¹ .
Главным углом в плане называется угол между главной режущей кромкой и направлением подачи. Этот угол обозначается буквой φ (фи).
Вспомогательным углом в плане называется угол между вспомогательной режущей кромкой и направлением подачи. Этот угол обозначается φ ¹ .
Углом при вершине называется угол, образованный пересечением главной и вспомогательной режущих кромок. Этот угол обозначается греческой буквой ε (ипсилон).
Упрощенное изображение углов резца, принятое на практике, указано на рис. 6, а и б (линия АА - плоскость резания). На рис. 6, в показаны углы резца в плане.
Главная режущая кромка резца может составлять различные углы наклона с линией, проведенной через вершину резца параллельно основной плоскости (рис. 7).

Рис. 6. Упрощенное изображение углов токарного резца.

Угол наклона измеряется в плоскости, проходящей через главную режущую кромку перпендикулярно к основной плоскости, и обозначается греческой буквой λ (лямбда). Угол этот считается положительным (рис. 7, а), когда вершина резца является самой низкой точкой режущей кромки; равным нулю (рис. 7, б) - при главной режущей кромке, параллельной основной плоскости, и отрицательным (рис. 7, в) - когда вершина резца является наивысшей точкой режущей кромки.

Рис. 7. Углы наклона главной режущей кромки: положительный (а), равный нулю (б) и отрицательный (в)

Значение углов резца и общие соображения при их выборе. Все перечисленные углы имеют важное значение для процесса резания и к выбору величины их следует подходить очень осторожно.
Чем больше передний угол γ резца, тем легче происходит снятие стружки. Но с увеличением этого угла (рис. 6, а) уменьшается угол заострения резца, а поэтому и прочность его.
Передний угол резца может быть вследствие этого сравнительно большим при обработке мягких материалов и, наоборот, должен быть уменьшен, если обрабатываемый материал тверд. Передний угол может быть и отрицательным (рис. 6, б), что способствует повышению прочности резца.
Из рис. 6, а ясно, что с уменьшением переднего угла резца увеличивается угол резания. Сопоставляя это со сказанным выше о зависимости переднего угла от твердости обрабатываемого материала, можно сказать, что чем тверже обрабатываемый материал, тем больше должен быть угол резания, и наоборот.
Чтобы определить величину угла резания δ, когда известен передний угол резца, достаточно, как это видно из рис. 6, а, вычесть из 90º данную величину переднего угла. Например, если передний угол резца равен 25º , угол резания его составляет 90º - 25º = 65º ; если передний угол составляет - 5º , то угол резания будет равен 90º - (-5º ) = 95º .
Задний угол резца α необходим для того, чтобы между задней поверхностью резца и поверхностью резания обрабатываемой детали не было трения. При слишком малом заднем угле это трение получается настолько значительным, что резец сильно нагревается и становится негодным для дальнейшей работы. При слишком большом заднем угле угол заострения оказывается настолько малым, что резец становится непрочным.
Величина угла заострения β определяется сама собой после того, как выбраны задний и передний углы резца. В самом деле, из рис. 6, а очевидно, что для определения угла заострения данного резца достаточно вычесть из 90º сумму заднего и переднего его углов. Так, например, если резец имеет задний угол равным 8º , а передний 25º , то угол заострения его равен 90º - (8º +25º ) = 90º -33º =57º . Это правило следует помнить, так как им иногда приходится пользоваться при измерении углов резца.
Значение главного угла в плане φ вытекает из сопоставления рис. 8, а и б, на которых схематически показаны условия работы резцов при одинаковых подачах s и глубине резания t , но при разных значениях главного угла в плане.


Рис. 8. Влияние главного угла в плане на процесс резания.

При главном угле в плане, равном 60º , сила P , возникающая в процессе резания, вызывает меньший прогиб обрабатываемой детали, чем аналогичная сила Q при угле в плане 30º . Поэтому резец с углом φ=60º более пригоден для обработки нежестких деталей (относительно небольшого диаметра при большой длине) в сравнении с резцом, имеющим угол φ=30º . С другой стороны, при угле φ=30º длина режущей кромки резца, непосредственно участвующая в его работе, больше соответственной длины при φ=60º . Поэтому резец, изображенный на рис. 8, б, лучше поглощает теплоту, возникающую при образовании стружки и дольше работает от одной заточки до другой.
Значение ушла наклона λ заключается в том, что выбирая положительное или отрицательное значение его, мы можем направлять отходящую стружку в ту или другую сторону, что в некоторых случаях бывает очень полезно. Если угол наклона главной режущей кромки резца положителен, то завивающаяся стружка отходит вправо (рис. 9, а); при угле наклона, равном нулю, стружка отходит в направлении, перпендикулярном главной режущей кромке (рис. 9, б); при отрицательном угле наклона стружка отходит влево (рис. 9, в).

Рис. 9. Направление схода стружки при положительном (а), равном нулю (б) и отрицательном (в) угле наклона главной режущей кромки.

В промышленности, машиностроении для получения требуемой точности и чистоты поверхности изготовленные отверстия подвергают дополнительной обработке. Достигают нужных показателей, используя расточной резец.

1 Токарный инструмент для растачивания – назначение и конструкция резцов

Резе́ц – режущий инструмент, который предназначен для обработки деталей или заготовок из различных материалов, а также разных форм, размеров, показателей точности. Является основным, наиболее часто применяемым инструментом при строгальных, долбежных и токарных работах (на станках соответствующего типа).

Чтобы придать изделию требуемые форму, размеры и точность изготовления с заготовки резцом снимают (срезают последовательно) слои материала. При этом инструмент и деталь, закрепленные жестко в станке, перемещаются относительно друг друга и взаимно контактируют. В результате этого рабочая часть резца врезается в слой материала, а затем срезает его в виде стружки.

У инструмента рабочий элемент представляет собой клин (острую кромку), который врезается в материал и деформирует его слой, вследствие чего сжатый фрагмент заготовки скалывается и сдвигается кромкой схода стружки (передней поверхностью) резца. Инструмент двигается дальше, что сопровождается повторением процесса скалывания и образованием из отдельных срезанных элементов стружки, вид которой зависит от скорости вращения материала заготовки, подачи станка, относительного расположения детали и резца, применения СОЖ (смазочно-охлаждающей жидкости) и ряда других причин.

По виду работ и применяемости инструмент делят на:

  • строгальный;
  • долбежный;
  • токарный.

Инструмент, снимающий стружку в результате взаимного прямолинейного перемещения резца и заготовки, называют строгальным (когда резание горизонтальное) или долбежным (вертикальное). Принцип работы обоих этих резцов идентичен и отличается от токарных, где резание непрерывно. При строгании и долблении инструмент режет исключительно при рабочем ходе.

В процессе токарной обработки заготовка вращается, в то время как осуществляется продольная и поперечная подача неподвижного резца, либо деталь стационарна, а инструмент вращается и подается (на расточных станках). Расточной токарный резец предназначен для расточки глухих и сквозных уже готовых отверстий, которые могут быть предварительно получены сверлением, штамповкой, в процессе отливки заготовки.

Основные элементы расточного токарного резца:

  • головка (рабочая часть);
  • державка (стержень) – используется для закрепления инструмента на станке.

Головка состоит из поверхностей:

  • передней – по ней во время резки сходит стружка;
  • главной задней – обращена к поверхности резания материала;
  • вспомогательной задней – обращена к обработанной поверхности детали;
  • главной режущей кромки – пересечение главной задней поверхности с передней;
  • вспомогательной режущей кромки – пересечение вспомогательной задней и передней поверхностей;
  • вершины – точка пересечения вспомогательной и главной режущих кромок.

Важными характеристиками резцов также являются углы, образуемые между поверхностями инструмента, плоскостями их проекций и касательными к ним, а также направлениями подачи. Инструмент для глухих и сквозных отверстий отличается формой головки.

2 Классификация и виды резцов для растачивания

Резцы для растачивания классифицируют по следующим основным параметрам. По направлению подачи делят на:

  • левые;
  • правые.

По конструкции:

  • прямые – осевая линия головки резца продолжает ось державки или параллельна ей;
  • отогнутые – ось головки отклонена влево или вправо от осевой державки;
  • изогнутые – ось державки изогнута;
  • оттянутые – головка инструмента уже державки;
  • разработки конструкторов и токарей-новаторов, другие.

По сечению стержня:

  • круглые;
  • квадратные;
  • прямоугольные.

По способу изготовления:

  • Цельные – материал изготовления державки и головки идентичен.
  • Составные – режущая часть выполнена в виде пластины, прикрепляемой определенным образом к державке из углеродистой конструкционной стали. Пластинки из рапида (быстрорежущей стали) и твердого сплава крепятся механически или припаиваются.

По роду материала:

  • из инструментальной стали:
    • углеродистой – для малых скоростей обработки, обозначение начинается с буквы У;
    • легированной – допустимо резать в 1,2–1,5 раза быстрее, чем инструментом из углеродистой, так как выше теплостойкость;
    • высоколегированной (быстрорежущей) – повышенной производительности, обозначение с буквы Р (Рапид);
  • из твердого сплава – скорости резания более высокие, чем у резцов из рапида, оснащены пластинами из твердых сплавов:
  • металлокерамическими:
    • вольфрамовыми – группы ВК из карбида вольфрама, который сцементирован кобальтом;
    • титановольфрамовыми – группы ТК из карбидов титана и вольфрама, сцементированных кобальтом;
    • титанотанталовольфрамовыми – группы ТТК из карбидов титана, тантала и вольфрама, сцементированных кобальтом;
  • минералокерамическими – характеризуются высокой теплостойкостью и одновременно очень хрупкие, что ограничивает их массовое применение, состоят из материалов, в основе которых технический глинозем (Аl 2 O 3);
  • керметовыми – материалы на основе минералокерамики с металлами и их карбидами, вводимыми для снижения хрупкости;
  • эльборовые – в основе материала режущих пластин кубический нитрид бора;
  • алмазные – с алмазными пластинами.

По типу установки относительно заготовки:

  • Радиальные – устанавливают перпендикулярно оси детали. Широко используются в промышленности, благодаря простоте крепления и удобному выбору геометрических характеристик режущей части.
  • Тангенциальные – параллельно оси обрабатываемой детали. При работе усилие резца направлено вдоль его оси, благодаря этому он не подвергается изгибу. В основном применяются на токарных полуавтоматах и автоматах, где главным критерием обработки является чистота.

По виду обработки:

  • черновые (обдирочные);
  • получистовые – отличаются от обдирочных вершиной, радиус закругления которой увеличен, благодаря чему шероховатость поверхности после обработки уменьшается;
  • чистовые;
  • для тонкого точения.

Также выделяют резцы для растачивания глубоких отверстий и двусторонние. Основные типы инструмента стандартизованы. На каждый вид такого изделия, как расточной резец, ГОСТ регламентирует соответствующие конструкцию и размеры.

  • При отсутствии зенкера или сверла для рассверливания необходимого диаметра.
  • Когда требуется обеспечить необходимые прямолинейность и точность положения оси отверстия.
  • Когда диаметр обрабатываемого отверстия превышает , зенкеров.
  • При малой длине отверстия.
  • Расточной инструмент применяют на специальных расточных, токарно-револьверных, токарных, фрезерных станках и автоматах, оборудовании для алмазной (тонкой) расточки. Закрепляют в специальных патронах, переходных втулках или державках.

    Резцы из инструментальной стали обычно используют при работах с легкими сплавами и материалами (фторопластом, текстолитом, алюминием и подобными), а оснащенные твердосплавными пластинами – с более прочными и твердыми (нержавеющая или закаленная сталь, бронза и другие). В процессе работы режущий инструмент подвержен износу (притупляется режущая кромка, а у изделий с твердосплавными пластинами выкрашивается), поэтому делают его переточку.

    Loading...Loading...