Зависимость тяги винта самолета от мощности мотора. Расчет и изготовление воздушного винта. Характеристики воздушных винтов

Г. В. Махоткин

Проектирование воздушного винта

Воздушный винт завоевал репутацию незаменимого движителя для быстроходных плавсредств, эксплуатируемых на мелководных и заросших акваториях, а также для аэросаней-амфибий, которым приходится работать на снегу, на льду и на воде. И у нас и за рубежом накоплен уже немалый опыт применения воздушных винтов на скоростных малых судах и амфибиях . Так, с 1964 г. в нашей стране серийно выпускаются и эксплуатируются аэросани-амфибии (рис. 1) КБ им. А. Н. Туполева. В США несколько десятков тысяч аэролодок, как их называют американцы, эксплуатируются во Флориде.


Проблема создания быстроходной мелкосидящей моторной лодки с воздушным винтом продолжает интересовать и наших судостроителей-любителей. Наиболее доступна для них мощность 20-30 л. с. Поэтому рассмотрим основные вопросы проектирования воздушного движителя с расчетом именно на такую мощность.

Тщательное определение геометрических размеров воздушного винта позволит полностью использовать мощность двигателя и получить тягу, близкую к максимальной при имеющейся мощности. При этом особую важность будет иметь правильный выбор диаметра винта, от которого во многом зависит не только КПД движителя, но и уровень шума, прямо обусловленный величиной окружных скоростей.

Исследованиями зависимости тяги от скорости хода установлено, что для реализации возможностей воздушного винта при мощности 25 л. с. необходимо иметь его диаметр - около 2 м. Чтобы обеспечить наименьшие энергетические затраты, воздух должен отбрасываться назад струей с большей площадью сечения; в нашем конкретном случае площадь, ометаемая винтом, составит около 3 м². Уменьшение диаметра винта до 1 м для снижения уровня шума уменьшит площадь, ометаемую винтом, в 4 раза, а это, несмотря на увеличение скорости в струе, вызовет падение тяги на швартовах на 37%. К сожалению, компенсировать это снижение тяги не удается ни шагом, ни числом лопастей, ни их шириной.

С увеличением скорости движения проигрыш в тяге от уменьшения диаметра снижается; таким образом, увеличение скоростей позволяет применять винты меньшего диаметра. Для винтов диаметром 1 и 2 м, обеспечивающих максимальную тягу на швартовах, на скорости 90 км/ч величины тяги становятся равными. Увеличение диаметра до 2,5 м, увеличивая тягу на швартовах, дает лишь незначительный прирост тяги на скоростях более 50 км/ч. В общем случае каждому диапазону эксплуатационных скоростей (при определенной мощности двигателя) соответствует свой оптимальный диаметр винта. С увеличением мощности при неизменной скорости оптимальный по КПД диаметр увеличивается.

Как следует из приведенного на рис. 2 графика, тяга воздушного винта диаметром 1 м больше тяги водяного гребного винта (штатного) подвесного мотора «Нептун-23» или «Привет-22» при скоростях свыше 55 км/ч, а воздушного винта диаметром 2 м - уже при скоростях свыше 30-35 км/ч. Расчеты показывают, что на скорости 50 км/ч километровый расход топлива двигателя с воздушным винтом диаметром 2 м будет на 20-25% меньше, чем наиболее экономичного подвесного мотора «Привет-22».

Последовательность выбора элементов воздушного винта по приводимым графикам такова. Диаметр винта определяется в зависимости от необходимой тяги на швартовах при заданной мощности на валу винта. Если эксплуатация мотолодки предполагается в населенных районах или районах, где существуют ограничения по шуму, приемлемый (на сегодня) уровень шумов будет соответствовать окружной скорости - 160-180 м/с. Определив, исходя из этой условной нормы и диаметра винта, максимальное число его оборотов, установим передаточное отношение от вала двигателя к валу винта.

Для диаметра 2 м допустимое по уровню шума число оборотов будет около 1500 об/мин (для диаметра 1 м - около 3000 об/мин); таким образом, передаточное отношение при числе оборотов двигателя 4500 об/мин составит около 3 (для диаметра 1 м - около 1,5).

При помощи графика на рис. 3 вы сможете определить величину тяги воздушного винта, если уже выбраны диаметр винта и мощность двигателя. Для нашего примера выбран двигатель самой доступной мощности - 25 л. с., а диаметр винта - 2 м. Для этого конкретного случая величина тяги равна 110 кг.

Отсутствие надежных редукторов является, пожалуй, самым серьезным препятствием, которое предстоит преодолеть. Как правило, цепные и ременные передачи, изготовленные любителями в кустарных условиях, оказываются ненадежными и имеют низкий КПД. Вынужденная же установка прямо на вал двигателя приводит к необходимости уменьшения диаметра и, следовательно, снижению эффективности движителя.

Для определения ширины лопасти и шага следует воспользоваться приводимой номограммой рис. 4. На горизонтальной правой шкале из точки, соответствующей мощности на валу винта, проводим вертикаль до пересечения с кривой, соответствующей ранее найденному диаметру винта. От точки пересечения проводим горизонтальную прямую до пересечения с вертикалью, проведенной из точки, лежащей на левой шкале числа оборотов. Полученное значение определяет величину покрытия проектируемого винта (покрытием авиастроители называют отношение суммы ширин лопастей к диаметру).

Для двухлопастных винтов покрытие равно отношению ширины лопасти к радиусу винта R. Над значениями покрытий указаны значения оптимальных шагов винта. Для нашего примера получены: покрытие σ=0,165 и относительный шаг (отношение шага к диаметру) h=0,52. Для винта диаметром 1 м σ=0,50 м и h=0,65. Винт диаметром 2 м должен быть 2-лопастным с шириной лопасти, составляющей 16,5% R, так как величина покрытия невелика; винт диаметром 1 м может быть 6-лопастным с шириной лопасти 50:3=16,6% R или 4-лопастным с шириной лопастей 50:2 = 25% R. Увеличение числа лопастей даст дополнительное уменьшение уровня шума.

С достаточной степенью точности можно считать, что шаг винта не зависит от числа лопастей. Приводим геометрические размеры деревянной лопасти шириной 16,5% R. Все размеры на чертеже рис. 5 даны в процентах радиуса. Например, сечение D составляет 16,4% R, расположено на 60% R. Хорда сечения разбивается на 10 равных частей, т. е. по 1,64% R; носок разбивается через 0,82% R. Ординаты профиля в миллиметрах определяются умножением радиуса на соответствующее каждой ординате значение в процентах, т. е. на 1,278; 1,690; 2,046 ... 0,548.

отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя
N: (η) = PV/N
(Р - , V - поступательная ).
При таких скоростях полёта, когда на лопастях воздушного винта не возникает местных сверхзвуковых течений, основные потери связаны с индуктивным сопротивлением (индуктивные потери) и профильным сопротивлением. Индуктивные потери минимальны, если винт создаёт за собой поле скоростей, совпадающее с описываемой винтом твёрдой винтовой поверхностью. смещающейся с пост, скоростью в направлении своей оси. Такое или близкое к нему поле скоростей обеспечивается соответствующим выбором распределения циркуляции скорости вдоль лопасти (то есть выбором формы лопасти).
При больших дозвуковых скоростях полёта, когда на лопасти образуются области со сверхзвуковым течением, замыкаемые скачками уплотнений, существенным становится (волновые потери). Эффективным способом уменьшения волновых потерь является использование профилей с возможно большими значениями критических Маха чисел и сверхкритических профилей, а также отгиб лопасти назад (саблевидные лопасти) аналогично стреловидному крылу. Отгиб вперёд (обратная стреловидность) здесь эффекта не даёт вследствие роста относительной скорости обтекания с увеличением радиуса и смешения замыкающего скачка уплотнения к задней кромке. С ростом числа Маха полёта (η) воздушных винтов с широкими гонкими саблевидными лопастями (винтовентиляторов) уменьшается значительно меньше, чем (η) винтов с обычными узкими лопастями, хотя индуктивные потери одинаковы.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Коэффициент полезного действия воздушного винта" в других словарях:

    коэффициент полезного действия воздушного винта Энциклопедия «Авиация»

    коэффициент полезного действия воздушного винта - коэффициент полезного действия воздушного винта — отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя N: η = PV/N (P — тяга винта, V — поступательная скорость … Энциклопедия «Авиация»

    коэффициент полезного действия винта - к.п.д. винта Безразмерная величина, характеризуемая отношением эффективной мощности воздушного винта к мощности воздушного винта. [ГОСТ 21664 76] Тематики винты воздушные авиационных двигателей Синонимы к.п.д. винта … Справочник технического переводчика

    воздушный винт Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    - (пропеллер), лопастный движитель, преобразующий мощность (крутящий момент) двигателя в тягу, необходимую для поступательного движения летательных аппаратов, аэросаней, глиссеров, судов на воздушной подушке. Воздушные винты бывают тянущие –… … Энциклопедия техники

    авиация Энциклопедия «Авиация»

    авиация - Рис. 1. Изменение приведённой «вредной» площади манёвренных истребителей по годам. авиация (франц. aviation, от лат. avis птица) широкое понятие, связанное с полётами в атмосфере аппаратов тяжелее воздуха. А. включает необходимые технические… … Энциклопедия «Авиация»

0

Винты могут быть тянущими и толкающими. Винты первого типа устанавливаются впереди фюзеляжа и крыла, винты второго типа - в их хвостовой части. Из соображений компоновки преобладающее использование получили тянущие винты. При выборе типа винта приходится учитывать и то, что отлетающие кусочки льда при обледенении самолета могут повредить лопасти винта, расположенного за крылом и фюзеляжем.

На двигателях большой Мощности выгодно бывает установить два винта, вращающихся в разные стороны. Такие винты называют соосными.


Применение соосных винтов позволяет не только спять большую мощность с вала двигателя, но за счет уменьшения потерь на закручивание воздушного потока получить несколько больший к. п. д. по сравнению с одиночным винтом.

Помимо этого, соосные винты, вращаясь в разные стороны, почти не создают реактивного момента, что весьма важно для обеспечения поперечного равновесия самолета.

Наиболее простым типом является винт фиксированного шага (ВФШ), у которого втулка и лопасти являются органически целыми. Материалом для изготовления таких винтов чаще всего служит древесина. Подобные винты в настоящее время применяют только на легких самолетах. Так как у ВФШ установочный угол в полете не изменяется, то подобный винт будет выгодным лишь при полете на весьма ограниченном диапазоне скоростей. В остальных случаях к. п. д. винта невысок.

Винты, у которых угол установки лопастей можно изменять в полете, называются винтами изменяемого шага (ВПШ). Лопасти у таких винтов относительно своих продольных осей автоматически или по воле летчика могут поворачиваться, изменяя угол установки.

Для уменьшения лобового сопротивления при отказе двигателя в полете применяют флюгерные винты изменяемого шага, лопасти которых с помощью специального привода по воле летчика устанавливаются в положение наименьшего сопротивления при остановленном винте. Это достигается при угле установки лопастей 83-85°.

Широкое применение в последние годы получили тормозные или реверсивные винты. Реверсивные винты - это ВПШ с приспособлениями, позволяющими устанавливать лопасти таким образом, что винт при вращении развивает отрицательную тягу. Наличие отрицательной тяги позволяет сократить длину послепосадочного пробега, увеличить угол планирования, повысить маневренность самолета при движении на земле.

Изменение угла установки лопастей у ВПШ может производиться механическим, гидравлическим и электрическим приводами.

Механическим винтом называется такой винт, у которого поворот лопастей на тот или иной угол осуществляется либо пилотом, либо теми силами, которые возникают при работе винта и изменяются при изменении режима работы. Иногда такие винты называются аэромеханическими. Они широко применяются на легких самолетах.

У гидравлических винтов изменяемого шага угол установки лопастей изменяется при помощи гидравлического двигателя под действием давления масла. Давление создается насосом, приводимым во вращение авиационным двигателем. Для питания насоса используется масло, идущее на смазку двигателя (неавтономный винт), а также масло, не входящее в систему смазки двигателя (автономный винт).

Изменение угла установки лопастей может производиться поршневым или шестеренчатым гидравлическим двигателем. Шестеренчатый двигатель может быть один на винт или по одному на каждую лопасть.


В том и в другом случаях вращательное движение гидравлического двигателя с помощью механической передачи осуществляет поворот лопастей.

Передача от подвижного элемента поршневого двигателя на лопасть осуществляется двумя способами:

поршень передает движение обойме - траверсе или поводку, связанному с эксцентрично установленным пальцем на лопасти или стакане, в котором крепится лопасть (рис. 114). Иногда поршень со стаканом лопасти связаны при помощи шатунов;

поршень, двигаясь поступательно, передвигает палец, установленный в винтовом вырезе обоймы. Палец, двигаясь по вырезу в обойме, поворачивает ее. Это движение передается лопастям через коническую зубчатую передачу.

Гидравлические винты могут быть выполнены по обратной, прямой и двойной схемам.

Винтом обратной схемы называется винт, у которого лопасти поворачиваются на малый шаг под действием момента поперечных составляющих центробежных сил лопастей Мцб, а на большой шаг - под действием момента М мех, создаваемого гидравлическим механизмом (рис. 114, а). При прекращении подачи масла или нарушении герметичности системы лопасти винта поворачиваются на минимальный шаг под действием указанных центробежных сил. Как следствие этого, в полете произойдет раскрутка двигателя, т. е. число, оборотов резко повысится свыше максимально допустимого. Пилот Должен будет выключить двигатель во избежание его разрушения.

Винтом прямой схемы называется винт, у которого лопасти поворачиваются на малый шаг под действием момента М мех, создаваемого гидравлическим механизмом, а на большой шаг - под действием разности моментов центробежных сил противовесов М пр центробежных сил лопастей М цб (рис. 114, б). При прекращении подачи масла лопасти такого винта устанавливаются на максимальный (рабочий) шаг. Для винтов прямой схемы раскрутка не опасна.

Вес таких винтов больше веса винтов обратной схемы, но преимуществом его является возможность получения некоторой мощности (до 70% максимальной) при прекращении подачи масла к винту.

Винтом двойной схемы называют такой винт, лопасти которого на малый шаг устанавливают под действием момента М мех создаваемого гидравлическим механизмом, и момента центробежных сил лопастей М цб, а на большой шаг - только при помощи гидравлического механизма (рис. 114, в).

Для предупреждения поворота лопастей винта двойной схемы на малый шаг при отказе системы подачи масла предусмотрен механизм, называемый фиксатором шага. В случае прекращения подачи масла фиксатор шага запирает масло в полости большого шага цилиндровой группы винта, фиксируя лопасти на том шаге, на котором находилась лопасть в момент аварии. Фиксатор шага может быть установлен и на винте обратной схемы, но только при двухканальном подводе масла к винту.

Электрические винты изменяемого шага. Лопасти этих винтов поворачиваются на нужный угол при помощи электродвигателей. На одном винте может быть установлен один электродвигатель или несколько (по числу лопастей); в последнем случае для синхронизации поворота лопасти связывают механически. У некоторых винтов электродвигатель установлен на авиационном двигателе, и движение лопастям передается при помощи дифференциальной зубчатой передачи. Электродвигатели выбираются всегда реверсивные, так как лопасти должны поворачиваться в обе стороны. Питание электрическим током двигатели получают от общей сети самолета. Электродвигатели, приводящие в действие лопасти винта, снабжаются концевыми выключателями, которые отключают двигатели в момент, когда лопасти повернутся на предельный малый или большой шаг.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Это отдельная самостоятельная единица, а точнее целый лопастной агрегат. Он является движителем для аппарата, на котором установлен, то есть превращает мощность двигателя в тягу и, в конечном счете, в движение.

Человек уже давно проявлял внимание к винту. Первые теоретические свидетельства этого имеются еще в рукописях и рисунках Леонардо да Винчи. А практически его впервые применил (для метеорологических приборов) М. В. Ломоносов. вначале устанавливался на дирижаблях, в последствии и по сегодняшнее время на самолетах и при использовании и двигателей. Применяется он также и на наземных аппаратах. Это так называемые суда на воздушной подушке, а также аэросани и глиссеры. То есть история его (как и история всей авиации:-)) длинна и увлекательна и еще, похоже, далеко не закончена.

Что касается теории и принципа действия… Хотел начать рисовать векторные диаграммы, а потом передумал:-). Во-первых не тот сайт, а, во-вторых, все это я уже описал , и даже :-). Скажу лишь, что лопасти воздушного винта имеют аэродинамический профиль, и при его вращении в воздушной среде возникает та же картина, как и при движении крыла.

Аэродинамическая сила (картинка из предыдущей статьи:-))

Все те же , тот же скос потока, только теперь уже подъемная сила становится тягой винта, заставляющей самолет двигаться вперед.

Есть, конечно, и свои особенности. Ведь (точнее его лопасти) по сравнению с совершает более сложное движение: вращательное плюс поступательное движение вперед. И на самом деле теория воздушного винта достаточно сложна. Однако для принципиального понимания вопроса всего сказанного вполне достаточно. Остановлюсь только на некоторых особенностях.Замечу, кстати, что винты бывают не только тянущие, но и толкающие (такие, между прочим, стояли на самолете братьев Райт).

Пропеллер немецкого дирижабля SL1 (1911) диаметром 4,4 м.

Воздушный винт для траспортного самолета А400М.

Транспортный самолет А400М.

При вращении воздушного винта и одновременном его движении вперед, каждая его точка как бы движется по спирали, а сам винт как бы «ввинчивается в воздух», почти, как винт в гайку или шуруп в дерево. Аналогия очень даже существенная:-). Похоже на резьбу пары «болт –гайка». Каждая резьба имеет такой параметр, как шаг. Чем шаг больше, тем резьба как бы более растянута, и болт в гайку ввинчивается быстрее. Понятие шага существует и для воздушного винта. По сути дела это такое воображаемое расстояние, на которое передвинется вращающийся в воздухе винт при его повороте на один оборот. Для того, чтобы он «ввинчивался» быстрее, нужно, чтобы сила, его тянущая (тяга винта, тот самый аналог подъемной силы), была больше. Или же все, соответственно, наоборот. А этого можно достичь за счет изменения величины аналога угла атаки, который называется углом установки лопасти винта, или попросту шагом винта . Понятие шага винта существует для всех видов воздушных винтов, для самолетов и для вертолетов, и принцип их действия вобщем-то одинаков.

Транспортник Кролевских ВВС Hercules C-4 на стоянке с винтами во флюгерном режиме.

Первые воздушные винты, стоявшие на аэропланах, имели фиксированный шаг. Но дело в том, что любой винт имеет такой параметр, как коэффициент полезного действия, который оценивает эффективность его работы. А она может меняться в зависимости от изменения скорости полета, мощности двигателя, да и лобовое сопротивление винта на это влияет. Вот для того, чтобы сохранить кпд на достаточной высоте была придумана (еще в 30-х года 20 в.) система изменения шага и появились винты изменяемого в полете шага (ВИШ ). Теперь, в зависимости от задаваемого летчиком режима полета, шаг винта может меняться. Кроме того обычно существуют еще два специальных режима. Реверсивный – для создания при торможении самолета на земле и флюгерный , который используется при выключении (чаще аварийном) двигателя в полете. Тогда лопасти выставляются «по потоку», чтобы не создавать лишнего сопротивления полету.

Диаметр винта и его шаг – это основные технические параметры воздушного винта. Существует еще такое понятие, как крутка. То есть каждая лопасть по всей длинне слегка закручена. Это делается опять же для того, чтобы при одной и той же мощности лопасть создавала наибольшую тягу.

Американский экспериментальный самолет Bell X-22 с импеллерами 1966 г.

Французский экспериментальный самолет с импеллерами NORD 500 CADET. 1967 г.

1932 г. Италия. Экспериментальный самолет с импеллером "Летающая бочка"

Современные винты вообще достаточно разнообразны по своей конструкции. Количество лопастей может меняться (в среднем от 2 до 8). может быть как тянущим, так и толкающим. Винт по- другому еще называется пропеллер . Это устаревшее название и происходит от латинского prōpellere, что значить гнать, толкать вперед. Однако сейчас еще одно слово вошло в употребеление. Это слово импеллер . Оно означает «крыльчатка» и обозвали им определенный тип воздушного винта, заключенного в кольцевую оболочку. Это позволяет повысить эффетивность его работы, снизить потери и увеличить безопасность. Однако такого рода летательные аппараты находятся только лишь в стадии экспериментальной разработки.

Основной скоростной диапазон применения винтов ограничен скоростями 700-750 км/ч. Но даже это достаточно большая скорость и для обеспечения устойчивой и эффективной работы во всем диапазоне применяются различные технические ухищрения. В частности разрабатываются многолопастные винты с саблевидными лопастями, ведется работа над сверхзвуковыми винтами, применяются вышеуказанные импеллеры. Кроме того уже достаточно давно применяются так называемые соосные винты, когда на одной оси вращаются два воздушных винта в различных направлениях. Примером самолета с такими винтами может быть самый быстрый самолет с турбовинтовыми двигателями российский стратегический бомбардировщик ТУ-95 . Его скорость (макс.) 920 км/ч.

Стратегический бомбардировщик ТУ-95.

К сожалению, , особенно в сочетании с , имеет все-таки ограниченную область применения. Конечно, там, где так необходимы ближнемагистральные самолеты и так называемая он себя еще покажет. Но тем не менее соревнование высота-скорость-дальность он вместе со своим спутником поршнеым мотором уже проиграл . Но об этом в другой статье…

Фотографии кликабельны.

Изобретение относится к авиации. Винт содержит эллипсоидную ступицу 1 и лопасти, которые имеют передние кромки 3 и задние кромки 4. Каждая лопасть имеет рабочую поверхность 5. Концы лопастей снабжены концевыми гребнями 6, которые размещены со стороны задней кромки, а относительно рабочей поверхности 5 - под углом . Концевые гребни 6 выполнены с криволинейными кромками, имеющими максимальную кривизну вблизи задней кромки 4. Концевой гребень каждой лопасти выполнен плоским и составляет с рабочей поверхностью угол от 90 до 135 o , при этом его высота над рабочей поверхностью составляет от 0,5 до 3,5% от величины диаметра винта. Изобретение направлено на повышение коэффициента полезного действия. 4 з.п.ф-лы, 3 ил.

Изобретение относится к технике воздушных тяговых винтов для самолета и может быть использовано на пассажирских самолетах, на спортивных самолетах, на дельтапланах и на военных самолетах, а так же в качестве рулевого винта на вертолетах. Известные воздушные винты самолетов выполнены в виде двух, трех или в многолопастном исполнении. Все лопасти расположены симметрично и сбалансировано на цилиндрической или эллипсоидной ступице, лобовая часть которой снабжена куком. При вращении винта концы его лопастей формируют диаметр винта. Каждая лопасть винта самолета выполнена в виде плоско-профильной пластины с заостренной законцовкой по типу "ХОФФМАН" или с прямоугольной лопатовидной законцовкой по типу В-530ТА-Д35 . Лопасти винта установлены под определенным углом к плоскости вращения винта, что позволяет рабочей поверхности лопасти как наклонной поверхности перемещать массу воздуха от передней кромки к задней, обеспечивая при этом получение реактивной силы, направленной симметрично от всех лопастей вдоль оси вращения винта, которая обеспечивает перемещение самолета вперед. Недостатком таких известных воздушных винтов для самолета является то, что при быстром вращении винта омывающий его воздух не только смещается наклонными рабочими поверхностями лопастей вдоль оси вращения винта, но за счет создаваемой во вращающемся потоке воздуха центробежной силы часть вращающейся воздушной массы устремляется в радиальном направлении вдоль рабочих поверхностей лопастей и срывается с их концов в окружающее воздушное пространство, перенося в него всю кинетическую энергию, полученную при радиальном движении массы воздуха, и тем самым снижая КПД винта. Наиболее близким техническим решением, выбранным в качестве прототипа, является винтовентилятор СВ-27 самолета АН-70 . Лопасти этого вентилятора имеют саблевидную форму передних и задних кромок. Такая кривизна передних и задних кромок лишь в небольшой степени изменяет направление радиального потока воздуха, созданного центробежной силой. Недостатком такого технического решения является то, что частично измененный саблевидным профилем лопасти радиальный поток воздуха в значительной степени устремляется в окружном направлении, а не вдоль оси вращения винта. Поэтому, так же как и в аналогах , , большая часть воздушного потока, созданного действием центробежной силы, срывается с концов таких саблевидных лопастей и устремляется с большой скоростью, неся в себе и большую кинетическую энергию, в окружающее воздушное пространство, но не выполняя полезной работы и не повышая КПД винта. Задача, на решение которой направлено изобретение, состоит в увеличении коэффициента полезного действия винта самолета. Это достигается тем, что воздушный винт самолета, выполненный в виде сбалансированных и совмещенных на цилиндрической или эллипсоидной поверхности нескольких плоскопрофильных лопастей, имеющих передние и задние кромки, и концевые кромки которых составляют диаметр винта, а одна из двух их поверхностей рабочая, которая установлена под острым углом к плоскости вращения винта, при этом торцевая кромка каждой лопасти отогнута в сторону рабочей поверхности лопасти и составляет с ней угол , имеющий интервал от 90 до 135 o , при этом максимальная высота гребня относительно рабочей поверхности составляет от 0,5 до 3,5% от величины диаметра винта. Торцевая кромка каждой лопасти отогнута к ее рабочей поверхности, например, на угол , равный 90 o . Максимальная высота отогнутой торцевой кромки относительно рабочей поверхности может составлять, например, 1,5% от величины диаметра винта. Радиус отгиба торцевой кромки от рабочей поверхности лопасти может, например, составлять 1-5 единиц от толщины торцевой кромки. На фиг. 1 изображен вид двухлопастного винта самолета вдоль его оси. На фиг. 2 изображено сечение А-А лопасти на фиг. 1. На фиг. 3 изображен вид лопасти по стрелке Б на фиг.2. В статическом состоянии воздушный винт содержит эллипсоидную ступицу 1 и лопасти 2, которые имеют передние кромки 3 и задние кромки 4. Кроме того, каждая лопасть 2 имеет рабочую поверхность 5. Законцовки лопастей 2 отогнуты на угол , с образованием концевых гребней 6. Концевые гребни 6 выполнены с криволинейными торцевыми кромками 7, максимальная кривизна которых смещена к задней кромке 4. Относительно рабочей поверхности 5 кромка 7 гребня 6 поднята на высоту Н. Концевой гребень 6 отогнут от лопасти 2 плавным переходом, имеющим радиус r. Устройство работает следующим образом. Воздушный винт самолета диаметром D при вращении вокруг своей оси перемещает рабочими поверхностями 5 лопастей 2 большую массу воздуха, обеспечивая реактивную силу, перемещающую самолет, при этом рабочие поверхности 5 выполняют функцию наклонных поверхностей. При быстром вращении винта омывающий его лопасти 2 воздух получает и большую величину центробежной силы, которая всегда смещается радиально от оси вращения, вдоль рабочих поверхностей 5. Большая масса воздуха, дошедшая до концевых гребней 6, изменяет свое направление на угол , равный 90 o , и далее подмешивается к основному потоку воздуха перемещаемого вдоль оси винта рабочими поверхностями 5. При этом ядро радиального потока воздуха, смещаемого вдоль рабочей поверхности 5, как более инерционное, смещается к ее задней кромке 4, где профиль торцевой кромки 7 имеет максимальную высоту Н, а это позволяет в большей степени улавливать радиальный поток воздуха, который несет себе и большую кинетическую энергию от радиального потока вдоль поверхностей 5, изменять его направление на 90 o и направлять ее вдоль оси винта, увеличивая тем самым тягу винта и повышая его КПД. Полезность заявляемого устройства воздушного винта самолета заключается в том, что наличие концевых гребней со стороны рабочих поверхностей винта повышает его КПД, а это и тяговые характеристики и быстроходность самолета. Экспериментально-лабораторная проверка модельного варианта двухлопастного винта при скорости его вращения лишь 950 об/мин показала прирост тяги на 6,4 %. Источники информации 1. Журнал "Моделист-конструктор" 8, 1986 г., с.12. 2. Журнал "Моделист-конструктор" 11, 1987 г., с. 15. 3. Журнал "Техника молодежи" 12, 1997 г., с. 1.

Формула изобретения

1. Воздушный винт самолета, выполненный в виде сбалансированных и совмещенных на цилиндрической или эллипсоидной поверхности ступицы нескольких плоскопрофильных лопастей, имеющих передние и задние кромки, и концевые гребни которых составляют диаметр винта, а одна из двух их поверхностей рабочая, которая установлена под острым углом к плоскости вращения винта, отличающийся тем, что концевой гребень каждой лопасти, имеющий криволинейную торцевую кромку, выполнен плоским и составляет с рабочей поверхностью угол , имеющий интервал от 90 до 135 o , при этом максимальная высота гребня относительно рабочей поверхности составляет от 0,5 до 3,5% от величины диаметра винта. 2. Винт по п. 1, отличающийся тем, что концевой гребень каждой лопасти составляет с ее рабочей поверхностью угол , равный 90 o . 3. Винт по п. 1, отличающийся тем, что максимальная высота гребня относительно рабочей поверхности составляет 1,5% от величины диаметра винта. 4. Винт по п. 1, отличающийся тем, что радиус плавного перехода между рабочей поверхностью лопасти и рабочей поверхностью концевого гребня составляет 1-5 единиц от толщины гребня. 5. Винт по п. 1, отличающийся тем, что максимальная кривизна торцевой кромки смещена к задней кромке лопасти.

Похожие патенты:

Изобретение относится к авиационной технике, в частности к вертолетостроению, и может быть использовано при создании летательного аппарата укороченного взлета и посадки, а также для создания систем спасения возвращаемых космических объектов

Группа изобретений относится к устройствам преобразования механической энергии в кинетическую энергию текучей среды. Пропеллер по каждому варианту содержит лопасти с участками прямой и обратной саблевидности, каждая из которых закреплена комлевой частью на ступице приводного вала. В каждом варианте пропеллер характеризуется формой выполнения каждой фронтальной поверхности лопасти. Группа изобретений направлена на упрощение конструкции. 3 н.п. ф-лы, 4 ил.

Изобретение относится к области авиационной техники, а именно к конструкциям лопастей несущего винта и способам их изготовления из слоистых композиционных материалов. Лопасть конструктивно выполнена по безлонжеронной силовой схеме с пенопластовым сердечником по всей длине хорды и работающей обшивкой. Пенопластовый сердечник выполнен из материала с изотропной ячеистой структурой, а обшивка - в виде многослойной оболочки из полимерно-композиционных материалов, охватывающей пенопластовый сердечник. Оболочка выполнена с переменной толщиной контура вдоль радиуса несущего винта и хорды лопасти, а ее внешние слои формируют аэродинамический профиль лопасти. В носовой части лопасти между слоями оболочки размещены секции центровочного груза, поверх внешнего слоя - противоэрозийная оковка. Технологически лопасть изготавливается методом «мокрой» выкладки слоев оболочки и последующим одношаговым «горячим» прессованием совместно с пенопластовым сердечником в пресс-форме. В процессе полимеризации оболочка и пенопластовый сердечник образуют монолитную интегральную структуру, обеспечивающую устойчивые геометрические параметры пера лопасти. Достигается снижение количества применяемой оснастки и стабильность упругомассовых характеристик лопасти. 2 н. и 4 з.п. ф-лы, 11 ил.

Изобретение относится к области винтовых движителей. Законцовка лопасти, выполненная в виде концевого крылышка, представляет собой профиль лопасти, разделенный на верхнюю и нижнюю части. Каждая часть концевого крылышка может иметь фиксированный или управляемый угол атаки, независимый от угла атаки другой части. Достигается уменьшение потерь мощности привода винта, улучшение аэродинамики лопасти, увеличение подъемной или тянущей силы и эффективности винта. 1 ил.

Изобретение относится к авиационной промышленности и может быть использовано при производстве лопастей несущих и рулевых винтов для вертолетов. Способ изготовления безлонжеронной лопасти винта вертолета заключается в том, что из термокомпрессионного пенопласта в соответствии с требуемыми размерами изготавливают заполнитель (1), имеющий форму лопасти. Из листов препрега формируют наружный (3), внутренний (2) и концевой пакеты (4), приклеивают центровочный груз (5) к внутреннему пакету (2), соединяют с последовательным расположением внутренний пакет (2), наружный пакет (3), резиновую накладку (8) и оковку (4). Размещают во внутреннем и наружном пакетах (2) и (3) заполнитель (1) таким образом, что внутренний пакет охватывает заполнитель по части его ширины, а наружный пакет - по всей ширине, и устанавливают концевой пакет (9). Собранное перо лопасти размещают в матрице и осуществляют ее тепловую обработку. При изготовлении пера лопасти может быть изготовлена и установлена продольная перегородка (11) из листов препрега, при этом размещение заполнителя (1) осуществляют частями. Достигается повышение точности наружной геометрии лопасти и сокращение количества технологической оснастки. 2 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к области турбинных двигателей, а именно к способу изготовления металлического усиления для лопатки рабочего колеса турбинного двигателя. Способ последовательно включает этап расположения металлических скоб в формующий инструмент, имеющий матрицу и пуансон, при этом металлические скобы представляют собой металлические секции с прямолинейной формой, согнутые в форму U или V; и этап горячего изостатического прессования металлических скоб, вызывающий интеграцию металлических скоб таким образом, чтобы получить сжатую металлическую часть. Обеспечивается возможность легкого получения металлического усиления без использования больших объемов материалов. 14 з.п. ф-лы, 27 ил.

Изобретение относится к пассивному устройству поглощения энергии для элемента конструкции летательного аппарата и касается лопасти, лопатки или любого другого элемента винта, крыла, стойки или фюзеляжа летательного аппарата. Устройство поглощения кинетической энергии содержит наружную оболочку, выполненную из плетеного композиционного материала с возможностью сохранять целостность после удара, сердцевину из пеноматериала, заключенную в наружную оболочку и заполняющую наружную оболочку, усилительные элементы, интегрированные в сердцевину из пеноматериала. При этом усилительные элементы содержат прерывистые нити, введенные посредством вшивания в сердцевину из пеноматериала. Причем каждая из прерывистых нитей имеет головку в виде L или Т, отбортованную снаружи наружной оболочки. Достигается повышение надежности и целостности конструкции при столкновении с птицами или твердыми предметами. 3 н. и 9 з.п. ф-лы, 13 ил.

Изобретение относится к авиации

Loading...Loading...