Титан материал. Общая характеристика. История открытия. Плюсы и минусы

Наиболее значимыми для народного хозяйства были и остаются сплавы и металлы, объединяющие легкость и прочность. Титан относится именно к этой категории материалов и, кроме того, обладает превосходной коррозийной стойкостью.

Титан – переходный металл 4 группы 4 периода. Молекулярная масса его составляет всего 22, что указывает на легкость материала. При этом вещество отличается исключительной прочностью: среди всех конструкционных материалов именно у титана самая высокая удельная прочность. Цвет серебристо-белый.

Что такое титан, расскажет видео ниже:

Понятие и особенности

Титан довольно распространен – по содержанию в земной коре занимает 10 место. Однако выделить действительно чистый металл удалось лишь в 1875 году. До этого вещество либо получали с примесями, либо называли металлическим титаном его соединения. Эта путаница привела к тому, что соединения металла стали использоваться значительно раньше, чем сам металл.

Обусловлено это особенностью материала: самые ничтожные примеси заметно влияют на свойства вещества, порой полностью лишая присущих ему качеств.

Так, самая небольшая доля других металлов лишает титан жаропрочности, что является одним из его ценных качеств. А небольшая добавка неметалла превращает прочный материал в хрупкий и непригодный к применению.

Эта особенность сразу же разделила получаемый металл на 2 группы: технический и чистый.

  • Первый применяют в тех случаях, когда более всего нужна прочность, легкость и коррозийная стойкость, так как последнее качество титан не теряет никогда.
  • Материал большой чистоты используется там, где нужен материал, работающий при очень больших нагрузках и больших температурам, но при этом отличающийся легкостью. Это, конечно, авиа- и ракетостроение.

Вторая особая черта вещества – анизотропность. Некоторые его физические качества изменяются в зависимости от приложения сил, что необходимо учитывать при применении.

При нормальных условиях металл инертен, не корродирует ни в морской воде, ни в морском или городском воздухе. Более того, это самое биологически инертное вещество из известных, благодаря чему в медицине широко применяются титановые протезы и имплантаты.

В то же время при повышении температуры он начинает реагировать с кислородом, азотом и даже водородом, а в жидком виде впитывает газы. Эта неприятная особенность крайне затрудняет и получение самого металла, и изготовление сплавов на его основе.

Последнее возможно только при использовании вакуумной аппаратуры. Сложнейший процесс производства превратил довольно распространенный элемент в весьма дорогостоящий.

Связь с другими металлами

Титан занимает промежуточное положение между двумя другими известнейшими конструкционными материалами – алюминием и железом, вернее говоря, сплавами железа. По многим параметрам металл превосходит «конкурентов»:

  • механическая прочность титана в 2 раза выше, чем у железа, и в 6 раз, чем у алюминия. При этом прочность при снижении температуры возрастает;
  • коррозийная стойкость намного выше, чем у железа и даже алюминия;
  • при нормальной температуре титан инертен. Однако при повышении до 250 С, начинает поглощать водород, что сказывается на свойствах. По химической активности он уступает магнию, но, увы, превосходит железо и алюминий;
  • металл намного слабее проводит электричество: его удельное электросопротивление выше, чем у железа 5 раз, выше, чем у алюминия в 20 раз, и выше, чем у магния в 10 раз;
  • теплопроводность также намного ниже: меньше, чем 1 железа в 3 раза, и меньше, чем у алюминия в 12 раз. Однако это свойство обуславливает очень низкий коэффициент температурного расширения.

Плюсы и минусы

На деле недостатков у титана множество. Но сочетание прочности и легкости настолько востребовано, что ни сложный способ изготовления, ни необходимость исключительной чистоты не останавливают потребителей металла.

К несомненным плюсам вещества относятся:

  • низкая плотность, что означает очень небольшой вес;
  • исключительная механическая прочность как самого металла титан, так и его сплавов. При повышении температуры титановые сплавы превосходят все сплавы алюминия и магния;
  • соотношение прочности и плотности – удельная прочность, достигает 30–35, что почти в 2 раза выше, чем у лучших конструкционных сталей;
  • на воздухе титан подлежит покрытию тонким слоем оксида, который и обеспечивает превосходную коррозийную стойкость.

Недостатков у металла тоже хватает:

  • стойкость к коррозии и инертность относится только к продукции с неактивной поверхностью. Титановая пыль или стружка, например, самовоспламеняются и сгорают с температурой в 400 С;
  • очень сложный способ получения металла титан обеспечивает очень высокую стоимость. Материал намного дороже железа, или ;
  • способность впитывать атмосферные газы при повышении температуры требует применения при плавке и получении сплавов вакуумной аппаратуры, что тоже заметно увеличивает стоимость;
  • титан отличается плохими антифрикционными свойствами – на трение он не работает;
  • металл и его сплавы склонны к водородной коррозии, предотвратить которую сложно;
  • титан плохо поддается обработке резанием. Сварка его тоже затруднена из-за фазового перехода во время нагревания.

Лист титана (фото)

Свойства и характеристики

Сильно зависят от чистоты. Справочные данные описывают, конечно, чистый металл, но характеристики технического титана могут заметно отличаться.

  • Плотность металла уменьшается при нагревании от 4,41 до 4,25 г/куб см. Фазовый переход изменяет плотность лишь на 0,15%.
  • Температура плавления металла – 1668 С. температуру кипения – 3227 С. Титан является тугоплавким веществом.
  • В среднем предел прочности на растяжение составляет 300–450 МПа, однако это показатель можно увеличить до 2000 МПА, прибегнув к закалке и старению, а также введению дополнительных элементов.
  • По шкале НВ твердость составляет 103 и это не предел.
  • Теплоемкость титана невелика – 0,523 кдж/(кг·К).
  • Удельное электросопротивление — 42,1·10 -6 ом·см.
  • Титан является парамагнитом. При снижении температуры его магнитная восприимчивость уменьшается.
  • Металлу в целом свойственны пластичность и ковкость. Однако на эти свойства сильно влияют кислород и азот в сплаве. Оба элемента придают материалу хрупкость.

Вещество устойчиво ко многим кислотам, включая азотную, серную в низкой концентрации и практически все органические за исключением муравьиной. Это качество обеспечивает титану востребованность в химической, нефтехимической, бумажной промышленности и так далее.

Структура и состав

Титан – хоть и переходный металл, да и удельное электросопротивление имеет низкое, все же, является металлом и проводит электрический ток, а это означает упорядоченную структуру. При нагревании до определенной температуры структура изменяется:

  • до 883 С устойчивой является α-фаза с плотностью в 4,55 г/куб. см. Она отличается плотной гексагональной решеткой. Кислород растворяется в этой фазе с образованием растворов внедрения и стабилизирует α-модификацию – отодвигает температурный предел;
  • выше 883 С стабильна β-фаза с объемно-центрированной кубической решеткой. Плотность его несколько меньше – 4,22 г/куб. см. Эту структуру стабилизирует водород – при его растворении в титане также образуются растворы внедрения и гидриды.

Эта особенность очень затрудняет работу металлурга. Растворимость водорода при охлаждении титана резко уменьшается, и в сплаве выпадает гидрид водорода – γ-фаза.

Он становится причиной появления холодных трещин при сварке, поэтому производителям приходится применять дополнительные усилия после плавки металла, чтобы очистить его от водорода.

О том, где можно найти и как сделать титан, расскажем ниже.

Данное видео посвящено описанию титана как металла:

Производство и добыча

Титан весьма распространен, так что с рудами, содержащими металл, причем в довольно больших количествах, затруднений не возникает. Исходным сырьем выступает рутил, анатаз и брукит – диоксиды титана в разной модификации, ильменит, пирофанит – соединения с железом, и так далее.

А вот сложна и требует дорогостоящей аппаратуры. Способы получения несколько отличаются, поскольку состав руды различен. Например, схема получения металла из ильменитовых руд выглядит так:

  • получение титанового шлака – породу загружают в электродуговую печь вместе с восстановителем – антрацитом, древесным углем и прогревают до 1650 С. При этом отделяют железо, которое идет на получение чугуна и диоксида титана в шлаке;
  • шлак хлорируют в шахтных или солевых хлораторах. Суть процесса сводится к тому, чтобы перевести твердый диоксид в газообразный тетрахлорид титана;
  • в печах сопротивления в специальных колбах металл восстанавливают натрием или магнием из хлорида. В итоге получают простую массу – титановую губку. Это технический титан вполне пригодный для изготовления химической аппаратуры, например;
  • если же требуется более чистый металл, прибегают к рафинированию – при этом металл реагирует с йодом с тем, чтобы получить газообразный йодид, а последний под действием температуры – 1300–1400 С, и электрического тока, разлагается, высвобождая чистый титан. Электрический ток подается через натянутую в реторте титановую проволоку, на которую и осаждается чистое вещество.

Чтобы получить титан в слитках, титановую губку переплавляют в вакуумной печи, чтобы предотвратить растворение водорода и азота.

Цена титана за 1 кг очень высока: в зависимости от степени чистоты металл стоит от 25 до 40 $ за 1 кг. С другой стороны, корпус кислотоупорного аппарата из нержавеющей стали обойдется в 150 р. и прослужит не более 6 месяцев. Титановый будет стоить около 600 р, но эксплуатируется в течение 10 лет. Много производств титана есть в России.

Области применения

Влияние степени очистки на физико-механические качества заставляет рассматривать именно с этой точки зрения. Так, технический, то есть, не самый чистый металл обладает превосходной коррозийной стойкостью, легкостью и прочностью, что и обуславливает его применение:

  • химическая промышленность – теплообменники, трубы, корпуса, детали насосов, арматура и так далее. Материал незаменим на участках, где требуется стойкость к кислотам и прочность;
  • транспортная промышленность – вещество используется для изготовления средств передвижения от железнодорожных составов до велосипедов. В первом случае, металл обеспечивает меньшую массу составов, что делает тягу более эффективной, в последнем – придает легкость и прочность, не зря ведь титановая велосипедная рама считается лучшей;
  • военно-морское дело – из титана изготавливают теплообменники, выхлопные глушители для подводных лодок, клапан, пропеллеры и так далее;
  • в строительстве широко применяют -титан – прекрасный материал для отделки фасадов и кровель. Вместе с прочностью сплав обеспечивает еще одно важное для архитектуры достоинство – возможность придавать изделиям самую причудливую конфигурацию, способность к формообразованию у сплава неограниченная.

Чистый металл, кроме того, является очень стойким к высоким температурам и сохраняет при этом прочность. Применение очевидно:

  • ракето- и авиастроение – из него изготавливают обшивку. Детали двигателей, элементы крепления, части шасси и так далее;
  • медицина – биологическая инертность и легкость делает титан куда более перспективным материалом при протезировании, вплоть до сердечных клапанов;
  • криогенная техника – титан является одним из немногих веществ, которые при снижении температуры становятся лишь прочнее и не утрачивает пластичности.

Титан – конструкционный материал самой высокой прочности при такой легкости и пластичности. Эти уникальные качества обеспечивают ему все более важную роль в народном хозяйстве.

О том, где взять титан для ножа, расскажет видео ниже:

Титан в виде оксида (IV) был открыт английским любителем-минералогом У. Грегором в 1791 году в магнитных железистых песках местечка Менакан (Англия); в 1795 году немецкий химик М. Г. Клапрот установил, что минерал рутил представляет собой природный оксид этого же металла, названного им "титаном" [в греческой мифологии титаны - дети Урана (Неба) и Геи (Земли)]. Выделить Титан в чистом виде долго не удавалось; лишь в 1910 году американский ученый М. А. Хантер получил металлический Титан нагреванием его хлорида с натрием в герметичной стальной бомбе; полученный им металл был пластичен только при повышенных температурах и хрупок при комнатной из-за высокого содержания примесей. Возможность изучать свойства чистого Титана появилась только в 1925, когда нидерландские ученые А. Ван-Аркел и И. де Бур методом термической диссоциации иодида титана получили металл высокой чистоты, пластичный при низких температурах.

Распространение Титана в природе. Титан - один из распространенных элементов, среднее содержание его в земной коре (кларк) составляет 0,57% по массе (среди конструкционных металлов по распространенности занимает 4-е место, уступая железу, алюминию и магнию). Больше всего Титана в основных породах так называемых "базальтовой оболочки" (0,9%), меньше в породах "гранитной оболочки" (0,23%) и еще меньше в ультраосновных породах (0,03%) и др. К горным породам, обогащенным Титаном, относятся пегматиты основных пород, щелочные породы, сиениты и связанные с ними пегматиты и другие. Известно 67 минералов Титан, в основном магматического происхождения; важнейшие - рутил и ильменит.

В биосфере Титан в основном рассеян. В морской воде его содержится 10 -7 %; Титан - слабый мигрант.

Физические свойства Титана. Титан существует в виде двух аллотропических модификаций: ниже температуры 882,5 °С устойчива α-форма с гексагональной плотноупакованной решеткой (а = 2,951Å, с = 4,679Å), a выше этой температуры - β-форма с кубической объемноцентрированной решеткой а = 3,269Å. Примеси и легирующие добавки могут существенно изменять температуру α/β превращения.

Плотность α-формы при 20°С 4,505 г/см 3 , a при 870°С 4,35 г/см 3 ; β-формы при 900°С 4,32 г/см 3 ; атомный радиус Ti 1,46 Å, ионные радиусы Ti + 0,94 А, Ti 2+ 0,78 Å, Ti 3+ 0,69 Å, Ti 4+ 0,64 Å; Т пл 1668 °С, Т кип 3227 °С; теплопроводность в интервале 20-25°С 22,065 вт/(м·К) ; температурный коэффициент линейного расширения при 20°С 8,5·10 -6 , в интервале 20-700°С 9,7·10 -6 ; теплоемкость 0,523 кдж/(кг·К) ; удельное электросопротивление 42,1·10 -6 ом·см при 20 °С; температурный коэффициент электросопротивления 0,0035 при 20 °С; обладает сверхпроводимостью ниже 0,38 К. Титан парамагнитен, удельная магнитная восприимчивость 3,2·10 -6 при 20 °С. Предел прочности 256 Мн/м 2 (25,6 кгс/мм 2), относительное удлинение 72% , твердость по Бринеллю менее 1000 Мн/м 2 (100 кгс/мм 2). Модуль нормальной упругости 108 000 Мн/м 2 (10 800 кгс/мм 2). Металл высокой степени чистоты ковок при обычной температуре.

Применяемый в промышленности технический Титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см 3 , предел прочности 300-550 Мн/м 2 (30-55кгс/мм 2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м 2 (115-165 кгс/мм 2). Конфигурация внешней электронной оболочки атома Ti 3d 2 4s 2 .

Химические свойства Титана. Чистый Титан - химически активный переходный элемент, в соединениях имеет степени окисления +4, реже +3 и +2. При обычной температуре и вплоть до 500-550 °С коррозионно устойчив, что объясняется наличием на его поверхности тонкой, но прочной оксидной пленки.

С кислородом воздуха заметно взаимодействует при температуре выше 600 °С с образованием ТiO 2 . Тонкая титановая стружка при недостаточной смазке может загораться в процессе механической обработки. При достаточной концентрации кислорода в окружающей среде и повреждении окисной пленки путем удара или трения возможно загорание металла при комнатной температуре и в сравнительно крупных кусках.

Оксидная пленка не защищает Титан в жидком состоянии от дальнейшего взаимодействия с кислородом (в отличие, например, от алюминия), и поэтому его плавка и сварка должны проводиться в вакууме, в атмосфере нейтрального газа или под флюсом. Титан обладает способностью поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практическое использования; при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре с небольшой скоростью, которая значительно возрастает при 400 °С и выше. Растворимость водорода в Титане является обратимой, и этот газ можно удалить почти полностью отжигом в вакууме. С азотом Титан реагирует при температуре выше 700 °С, причем получаются нитриды типа TiN; в виде тонкого порошка или проволоки Титан может гореть в атмосфере азота. Скорость диффузии азота и кислорода в Титане значительно ниже, чем водорода. Получаемый в результате взаимодействия с этими газами слой отличается повышенными твердостью и хрупкостью и должен удаляться с поверхности титановых изделий путем травления или механической обработки. Титан энергично взаимодействует с сухими галогенами, по отношению к влажным галогенам устойчив, так как влага играет роль ингибитора.

Металл устойчив в азотной кислоте всех концентраций (за исключением красной дымящейся, вызывающей коррозионное растрескивание Титана, причем реакция иногда идет со взрывом), в слабых растворах серной кислоты (до 5% по массе). Соляная, плавиковая, концентрированная серная, а также горячие органических кислоты: щавелевая, муравьиная и трихлоруксусная реагируют с Титаном.

Титан коррозионно устойчив в атмосферном воздухе, морской воде и морской атмосфере, во влажном хлоре, хлорной воде, горячих и холодных растворах хлоридов, в различных технологических растворах и реагентах, применяемых в химической, нефтяной, бумагоделательной и других отраслях промышленности, а также в гидрометаллургии. Титан образует с С, В, Se, Si металлоподобные соединения, отличающиеся тугоплавкостью и высокой твердостью. Карбид TiC (t пл 3140 °С) получают нагреванием смеси TiO 2 с сажей при 1900-2000 °С в атмосфере водорода; нитрид TiN (t пл 2950 °С) - нагреванием порошка Титан в азоте при температуре выше 700 °С. Известны силициды TiSi 2 , TiSi и бориды TiB, Ti 2 B 5 , TiB 2 . При температуpax 400-600 °C Титан поглощает водород с образованием твердых растворов и гидридов (TiH, TiH 2). При сплавлении TiO 2 со щелочами образуются соли титановых кислот мета- и ортотитанаты (например, Na 2 TiO 3 и Na 4 TiO 4), а также полититанаты (например, Na 2 Ti 2 O 5 и Na 2 Ti 3 O 7). К титанатам относятся важнейшие минералы Титана, например, ильменит FeTiO 3 , перовскит CaTiO 3 . Все титанаты малорастворимы в воде. Оксид Титана (IV), титановые кислоты (осадки), а также титанаты растворяются в серной кислоте с образованием растворов, содержащих титанилсульфат TiOSO 4 . При разбавлении и нагревании растворов в результате гидролиза осаждается Н 2 ТiO 3 , из которой получают оксид Титана (IV). При добавлении перекиси водорода в кислые растворы, содержащие соединения Ti (IV), образуются перекисные (надтитановые) кислоты состава Н 4 ТiO 5 и H 4 TiO 8 и соответствующие им соли; эти соединения окрашены в желтый или оранжево-красный цвет (в зависимости от концентрации Титана), что используется для аналитического определения Титана.

Получение Титана. Наиболее распространенным методом получения металлического Титана является магниетермический метод, то есть восстановление тетрахлорида Титана металлическим магнием (реже - натрием):

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

В обоих случаях исходным сырьем служат оксидные руды Титана - рутил, ильменит и другие. В случае руд типа ильменитов Титан в форме шлака отделяется от железа путем плавки в электропечах. Шлак (так же, как рутил) подвергают хлорированию в присутствии углерода с образованием тетрахлорида Титана, который после очистки поступает в восстановительный реактор с нейтральной атмосферой.

Титан по этому процессу получается в губчатом виде и после измельчения переплавляется в вакуумных дуговых печах на слитки с введением легирующих добавок, если требуется получить сплав. Магниетермический метод позволяет создать крупное промышленное производство Титана с замкнутым технологическим циклом, так как образующийся при восстановлении побочный продукт - хлорид магния направляется на электролиз для получения магния и хлора.

В ряде случаев для производства изделий из Титана и его сплавов выгодно применять методы порошковой металлургии. Для получения особо тонких порошков (например, для радиоэлектроники) можно использовать восстановление оксида Титана (IV) гидридом кальция.

Применение Титана. Основные преимущества Титана перед другими конструкционными металлами: сочетание легкости, прочности и коррозионной стойкости. Титановые сплавы по абсолютной, а тем более по удельной прочности (т. е. прочности, отнесенной к плотности) превосходят большинство сплавов на основе других металлов (например, железа или никеля) при температурах от -250 до 550 °С, а по коррозионности они сравнимы со сплавами благородных металлов. Однако как самостоятельный конструкционный материал Титан стал применяться только в 50-е годы 20 века в связи с большими техническими трудностями его извлечения из руд и переработки (именно поэтому Титан условно относили к редким металлам). Основная часть Титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Сплавы Титана с железом, известные под названием "ферротитан" (20-50% Титана), в металлургии качественных сталей и специальных сплавов служат легирующей добавкой и раскислителем.

Технический Титан идет на изготовление емкостей, химические реакторов, трубопроводов, арматуры, насосов и других изделий, работающих в агрессивных средах, например, в химическом машиностроении. В гидрометаллургии цветных металлов применяется аппаратура из Титана. Он служит для покрытия изделий из стали. Использование Титана дает во многих случаях большой технико-экономический эффект не только благодаря повышению срока службы оборудования, но и возможности интенсификации процессов (как, например, в гидрометаллургии никеля). Биологическая безвредность Титана делает его превосходным материалом для изготовления оборудования для пищевой промышленности и в восстановительной хирургии. В условиях глубокого холода прочность Титана повышается при сохранении хорошей пластичности, что позволяет применять его как конструкционный материал для криогенной техники. Титан хорошо поддается полировке, цветному анодированию и других методам отделки поверхности и поэтому идет на изготовление различных художественных изделий, в т. ч. и монументальной скульптуры. Примером может служить памятник в Москве, сооруженный в честь запуска первого искусственного спутника Земли. Из соединений Титана практическое значение имеют оксиды, галогениды, а также силициды, используемые в технике высоких температур; бориды и их сплавы, применяемые в качестве замедлителей в ядерных энергетических установках благодаря их тугоплавкости и большому сечению захвата нейтронов. Карбид Титана, обладающий высокой твердостью, входит в состав инструментальных твердых сплавов, используемых для изготовления режущих инструментов и в качестве абразивного материала.

Оксид титана (IV) и титанат бария служат основой титановой керамики, а титанат бария - важнейший сегнетоэлектрик.

Титан в организме. Титан постоянно присутствует в тканях растений и животных. В наземных растениях его концентрация - около 10 -4 % , в морских - от 1,2·10 -3 до 8·10 -2 %, в тканях наземных животных - менее 2·10 -4 %, морских - от 2·10 -4 до 2·10 -2 %. Накапливается у позвоночных животных преимущественно в роговых образованиях, селезенке, надпочечниках, щитовидной железе, плаценте; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление Титана с продуктами питания и водой составляет 0,85 мг; выводится с мочой и калом (0,33 и 0,52 мг соответственно).

Космический металл, материал будущего, превращающий мечту в реальность - всё это о титане, серебристо-белом, прочном и лёгком. Занимая девятое место по распространённости в природе, он отлично зарекомендовал себя в аэрокосмической и нефтехимической промышленности, машиностроении и медицине. Чудо-металл даже открыт был необычно, а изучение его свойств помогло человечеству выйти на новый уровень развития.

История открытия металла

Всё началось в 1791 году, когда, независимо друг от друга, одновременно У. Грегор (Англия) и М. Г. Клапрот (Германия) получили двуокись титана , но не сумели выделить из неё чистое вещество. Минералог и, по совместительству, сельский священник Грегор изучал чёрный железистый песок, найденный в окрестностях своего прихода. Результатом стало извлечение соединения титана - блестящих крупиц, которые названием «менакин» (от минерала менаканит) увековечили родные места англичанина.

Примерно в это же время химик Клапрот, изучая красные пески, привезённые из Венгрии, нашёл в минерале рутиле новое вещество и назвал его «титан». А, спустя несколько лет, доказал, что рутил и менакеновая земля - одинаковые соединения. В 1825 году шведским химиком Берцелиусом был получен первый образец металлического титана , но это не позволило продвинуться в исследовании свойств, так как примеси делали образец хрупким и неподходящим для механической обработки.

Только в 1925 году голландские химики ван Аркел и де Бур, применив термическое разложение иодида титана, не нашедшее широкого использования, получили вещество с 99,9% чистотой. Такой металл обладал пластичностью, его можно было раскатывать в листы, проволоку и фольгу. Это позволило начать полномасштабное изучение физических и химических свойств, привлечь внимание инженеров и строителей, наметить сферы применения. А уже в 1940 году появился кролловский процесс восстановления четырёххлористого титана магнием, успешно используемый и до сих пор.

Теории происхождения названия

Существует две теории возникновения наименования:

Нахождение титана в природе

Титан занимает почётное четвёртое место по содержанию в земной коре среди важных для человека металлов, уступая только железу, магнию и алюминию. Максимальное его количество сосредоточено в нижнем, базальтовом слое, немного меньше - в гранитном. Принимая во внимание высокую химическую активность, найти титан в чистом виде не представляется возможным. Наиболее распространены четырёхвалентные оксиды, которые концентрируются в рудах коры выветривания и в морской глине.

Сегодня насчитывают до 75 титановых минералов, а учёные периодически заявляют об открытии всё новых форм и соединений. Для промышленной переработки наибольшее значение имеют:

Титан - слабый мигрант, он может переноситься только в виде механических обломков каменной породы или при перемещениях коллоидных илистых слоёв водоёмов. Для биосферы характерно содержание максимальных количеств этого металла в морских водорослях, у животных он обнаружен в шерсти и роговых тканях, в организме человека присутствует в щитовидной железе, селезёнке, надпочечниках и плаценте.

Месторождения космического материала

Самыми распространёнными являются залежи ильменита, они составляют порядка 800 млн тонн. Запасы рутиловых руд значительно меньше, но при сохранении роста добычи все они могут обеспечить человечество ещё на 100 лет. По запасам титана Россия уступает только Китаю и насчитывает 20 разведанных месторождений. Большинство из них - комплексные, где добывают также железо, фосфор, ванадий и цирконий. Сегодня крупнейшим мировым производителем титана считается российская металлургическая компания «ВСМПО-АВИСМА».

Обширные залежи располагаются на территории ЮАР, Украины, Канады, США, Бразилии, Австралии, Швеции, Норвегии, Египта, Казахстана, Индии и Южной Кореи. Они различаются содержанием металла в рудах и объёмами добычи, геологические изыскания не прекращаются. Даже на Луне были обнаружены запасы титаносодержащих руд, некоторые из них в десятки раз богаче крупных месторождений Земли. Это позволяет надеяться на снижение рыночных цен металла и расширение сферы использования.

Физические свойства элемента

Titanium - химический элемент периодической таблицы Менделеева, находится в IV группе четвёртого периода. Имеет атомный номер 22, молярную массу 47,867, обозначается символом Ti и проявляет степени окисления от 2 до 4, наиболее устойчивы его четырёхвалентные соединения. При нормальном давлении температура плавления титана равна 1670 ± 2 °C, он относится к цветным тугоплавким металлам и по внешнему виду напоминает сталь.

Твёрдость, пластичность и предел текучести - важные параметры для любого металла, которые определяют сферу применения. Титан в 12 раз прочнее алюминия, в 4 раза меди и железа. А ещё он гораздо легче их всех (плотность титана всего 4,54 г/см 3) и свободно обрабатывается методами сварки, клёпки, ковки и проката. К важным особенностям относятся низкие показатели теплопроводности и электропроводности, которые остаются неизменными даже при высоких температурах.

Титан проявляет парамагнитные свойства: не намагничивается в магнитном поле, подобно никелю и железу, и не выталкивается, как серебро и золото. Его плохие антифрикционные свойства обусловлены налипанием на многие материалы. Уникальны показатели коррозионной стойкости и сопротивления механическому воздействию: пластины из титана, десять лет пролежавшие на дне моря, не претерпят изменений внешнего вида и состава, а железо за это время разложится полностью.

Химические свойства

Высокая коррозийная стойкость объясняется тем, что в нормальных условиях на поверхности металла присутствует оксидная плёнка. Однако в виде порошка, тонкой стружки или проволоки он способен самовоспламеняться и взрываться. Титан устойчив к водным растворам хлора и многим разбавленным щелочам и кислотам, кроме плавиковой, ортофосфорной и серной. Сварку и плавку производят в вакууме, потому что при даже незначительном нагреве проявляется одно из главных свойств титана - активное поглощение газов окружающей атмосферы.

Реакция с водородом, которая начинается при 60 °C, обратима, полученные гидриды при нагревании снова разлагаются. На воздухе при температуре 1200 °C титан пылает ярким белым пламенем, и только он способен гореть в атмосфере азота при температуре выше 400 °C с образованием нитридов. Для взаимодействия с галогенами необходимыми условиями являются отсутствие влаги и наличие катализатора - высокой температуры. При реакции с углеродом получается сверхтвёрдый карбид. С большинством металлов титан образует высокопрочные конструкционные или жаростойкие сплавы и интерметаллические соединения, часто применяется в качестве важного легирующего компонента.

Способ получения из сырья

Исходное сырьё - двуокись титана, содержащая мало посторонних примесей. Для этого нужен рутиловый концентрат, получаемый обогащением руды. Но его мировые запасы невелики, и чаще применяют титановый шлак (синтетический рутил), который получают термической обработкой - обогащением ильменитовых концентратов в электродуговой печи. В результате железо в виде чугуна собирается на дне специальной ванны, и остаётся порошок серого цвета - шлак, содержащий оксид титана. Его измельчают, смешивают с углём, брикетируют и хлорируют в печах, где при 800 °C в присутствии углерода образуются пары четырёххлористого титана.

Потом их очищают и в специальных реакторах восстанавливают магнием при 950 °C. На стенках образуется спёкшаяся пористая масса, титановая губка, которую для сепарации от соединений магния прокаливают в вакууме. Чтобы изготовить слитки титана используют плавку полученной губки в вакуумно-дуговых печах. Это предохраняет металл от окисления и способствует окончательному освобождению от примесей. Готовые слитки с чистотой до 99,7% используют для обработки давлением (прокатка, штамповка, ковка).

Основные сферы применения

Сложно описать все области жизни, где нашлось место титану, но среди основных направлений можно отметить:

Сфера применения титана постоянно расширяется, её сдерживают сложность и энергоёмкость процесса получения чистого вещества. Отчасти поэтому традиционные железо и алюминий сегодня ещё прочно удерживают позиции. Титан - дорогое удовольствие. Цена металла в виде концентрата в сотни раз меньше стоимости готовой продукции, например, листового проката. Сегодня такие расходы доступны далеко не всем, поэтому применение титана определяет уровень экономического развития и обороноспособности государства.

Все, что нужно знать о титане, а также о хроме и вольфраме

Многих интересует вопрос: какой самый твердый металл в мире? Это титан. Этому твердому веществу и будет посвящена большая часть статьи. Также немного ознакомимся и с такими твердыми металлами как хром и вольфрам.

9 интересных фактов о титане

1. Существует несколько версий, почему металл получил такое название. Согласно одной теории, его назвали в честь Титанов, бесстрашных сверхъестественных существ. По другой версии, название пошло от Титании, королевы фей.
2. Титан был открыт в конце XVIII века немецким и английским химиком.
3. Титан долго не использовали в промышленности из-за его природной хрупкости.
4. В начале 1925 года, после серии опытов, химики получили титан в чистом виде.
5. Стружка от титана легко воспламеняется.
6. Это один из самых легких металлов.
7. Титан может расплавиться только при температуре выше 3200 градусов.
8. Закипает при температуре 3300 градусов.
9. Титан имеет серебряный цвет.

История открытия титана

Металл, который впоследствии назвали титан, открыли двое ученых – англичанин Уильям Грегор и немец Мартин Грегор Клапрот. Ученые работали параллельно, и между собой не пересекались. Разница между открытиями составляет 6 лет.

Уильям Грегор дал своему открытию название — менакин.

Более чем через 30 лет был получен первый сплав титана, который оказался чрезвычайно хрупким, и не мог нигде использоваться. Считается, что лишь в 1925 году был выделен титан в чистом виде, который стал одним из самых востребованных в промышленности металлов.

Доказано, что российский ученый Кириллов в 1875 году сумел добыть чистый титан. Он опубликовал брошюру, в которой подробно описал свою работу. Однако исследования малоизвестного россиянина остались незамеченными.

Общая информация о титане

Титановые сплавы – спасение для механиков и инженеров. Например, корпус самолета изготовлен из титана. Во время полета он достигает скорости в несколько раз больше, чем скорость звука. Титановый корпус нагревается до температуры выше 300 градусов, и не плавится.

Металл замыкает десятку лидеров «Самых распространенных металлов в природе». Большие залежи обнаружены в ЮАР, Китае и , немало титана в Японии, Индии, на Украине.

Общее количество мирового запаса титанов насчитывает более 700 миллионов тонн. Если темпы добычи останутся прежними, титана хватит еще на 150-160 лет.

Крупнейший производитель самого твердого металла в мире – российское предприятие «ВСМПО-Ависма», которое удовлетворяет треть мировых потребностей.

Свойства титана

1. Коррозийная стойкость.
2. Высокая механическая прочность.
3. Небольшая плотность.

Атомный вес титана составляет 47, 88 а.е.м, порядковый номер в химической таблице Менделеева – 22. Внешне он очень похож на сталь.

Механическая плотность металла в 6 раз больше, чем у алюминия, в 2 раза выше, чем у железа. Он может соединиться с кислородом, водородом, азотом. В паре с углеродом металл образует невероятно твердые карбиды.

Теплопроводность титана в 4 раза меньше, чем у железа, и в 13 раз – чем у алюминия.

Процесс добычи титана

В земле титана большое количество, однако, извлечь его из недр стоит немалых денег. Для выработки используют иодидный метод, автором которого считается Ван Аркель де Бур.

В основе метода – способность металла сочетаться с иодом, после разложения этого соединения можно получить чистый, свободный от посторонних примесей титан.

Самые интересные вещи из титана:

  • протезы в медицине;
  • платы мобильных устройств;
  • ракетные комплексы для освоения Космоса;
  • трубопроводы, насосы;
  • навесы, карнизы, наружная обшивка зданий;
  • большинство деталей (шасси, обшивка).

Сферы применения титана

Титан активно используют в военной сфере, медицине, ювелирном деле. Ему дали неофициальное название «металл будущего». Многие говорят, что он помогает превратить мечту в реальность.

Самый твердый металл в мире изначально стали применять в военной и оборонной сфере. Сегодня основным потребителем титановых изделий является авиастроение.

Титан – универсальный конструкционный материал. Долгие годы он применялся для создания турбин самолетов. В авиационных двигателях из титана делают элементы вентилятора, компрессоры, диски.

Конструкция современного летательного аппарата может содержать до 20 тонн титанового сплава.

Основные сферы применения титана в авиастроении:

  • продукция пространственной формы (окантовка дверей, люков, обшивка, настил пола);
  • агрегаты и узлы, которые подвержены сильным нагрузкам (кронштейны крыльев, стойки шасси, гидроцилиндры);
  • части двигателя (корпус, лопатки для компрессоров).

Титан в космической сфере, ракето- и судостроении

Благодаря титану человек смог пройти сквозь звуковой барьер, и ворваться в Космос. Его использовали для создания пилотируемых ракетных комплексов. Титан может выдержать космическую радиацию, перепады температур, скорость движения.

Этот металл имеет небольшую плотность, что важно в судостроительной сфере. Изделия из титана легкие, а значит, снижается вес , увеличивается его маневренность, скорость, дальность хода. Если корпус корабля обшить титаном, его не нужно будет красить много лет – титан не ржавеет в морской воде (коррозийная стойкость).

Чаще всего этот металл в судостроении используют для изготовления турбинных двигателей, паровых котлов, конденсаторных труб.

Нефтедобывающая отрасль и титан

Перспективной сферой использования сплавов из титана считается сверхглубокое бурение. Для изучения и добычи подземных богатств есть необходимость проникнуть глубоко под землю – свыше 15 тысяч метров. Буровые трубы из алюминия, например, разорвутся из-за собственной тяжести, и только сплавы из титана могут достигнуть действительно большой глубины.

Не так давно титан стал активно использоваться для создания скважин на морских шельфах. Специалисты применяют титановые сплавы в качестве оборудования:

  • нефтедобывающие установки;
  • сосуды высокого давления;
  • глубоководные насосы, трубопроводы.

Титан в спорте, медицине

Титан крайне популярен в спортивной сфере из-за своей прочности и легкости. Несколько десятилетий назад из титановых сплавов сделали велосипед, первый спортивный инвентарь из самого твердого материала в мире. Современный велосипед состоит из титанового корпуса, такого же тормоза и пружин сидений.

В Японии создали титановые клюшки для игры в гольф. Эти приспособления легкие и долговечные, но крайне дорогие по цене.

Из титана делают большинство предметов, которые лежат в рюкзаке альпинистов и путешественников – столовая посуда, наборы для приготовления еды, стойки для укрепления палаток. Титановые ледорубы – очень востребованный спортивный инвентарь.

Этот металл очень востребован в медицинской отрасли. Из титана делают большинство хирургических инструментов – легких и удобных.

Еще одна сфера применения металла будущего – создание протезов. Титан превосходно «сочетается» с организмом человека. Медики назвали этот процесс «настоящее родство». Конструкции из титана безопасны для мышц и костей, редко вызывают аллергическую реакцию, не разрушаются под воздействием жидкости в организме. Протезы из титана стойкие, выдерживают огромные физические нагрузки.

Титан – удивительный металл. Он помогает человеку достичь невиданных высот в различных сферах жизни. Его любят и почитают за прочность, легкость и долгие годы службы.

Одним из самых твердых металлов является и хром

Интересные факты о хроме

1. Название металла происходит от греческого слова «chroma», что в переводе означает краска.
2. В естественной среде хром в чистом виде не встречается, а только в виде хромистого железняка, двойного оксида.
3. Самые большие месторождения металла расположены в ЮАР, России, Казахстане и Зимбабве.
4. Плотность металла – 7200кг/м3.
5. Хром плавится при температуре 1907 градусов.
6. Закипает при температуре 2671 градусов.
7. Совершенно чистый без примесей хром характеризуется тягучестью и вязкостью. В сочетании с кислородом, азотом или водородом металл становится ломким и очень твердым.
8. Этот металл серебристо-белого цвета открыл француз Луи Никола Воклен в конце XVIII века.

Свойства металла хрома

У хрома очень высокая твердость, им можно разрезать стекло. Он не окисляется воздухом, влагой. Если металл нагреть, окисление произойдет только на поверхности.

В год потребляют более 15 000 тон чистого хрома. Лидером по производству чистейшего хрома считается английская компания «Bell Metals».

Больше всего хрома потребляют в США, западных странах Европы и Японии. Рынок хрома нестабилен, и цены охватывают широкий диапазон.

Сферы использования хрома

Чаще всего применяется для создания сплавов и гальванических покрытий (хромирование на транспорт).

Хром добавляют в сталь, что улучшает физические свойства металла. Эти сплавы – наиболее востребованы в черной металлургии.

Сталь самой популярной марки состоит из хрома (18%) и никеля (8%). Такие сплавы отлично противостоят окислению, коррозии, прочны даже при высоких температурах.

Из стали, которая содержит треть хрома, изготавливают нагревательные печи.

Что еще делают из хрома?

1. Стволы огнестрельного оружия.
2. Корпус подводных лодок.
3. Кирпичи, которые используют в металлургии.

Еще одним чрезвычайно твердым металлом является вольфрам

Интересные факты о вольфраме

1. Название металла в переводе с немецкого («Wolf Rahm») означает «пена волка».
2. Это наиболее тугоплавкий металл в мире.
3. Вольфрам имеет светло-серый оттенок.
4. Металл был открыт в конце XVIII века (1781г) шведом Карлом Шееле.
5. Вольфрам плавится при температуре 3422 градусов, кипит – при 5900.
6. Металл имеет плотность 19.3 г/см³.
7. Атомная масса – 183.85, элемент VI группы в периодической системе Менделеева (порядковый номер – 74).

Процесс добычи вольфрама

Вольфрам относится к большой группе редких металлов. В нее входит также рубидий, молибден. Для этой группы характерна небольшая распространенность металлов в природе и малые масштабы потребления.

Получение вольфрама состоит из 3 этапов:

  • отделение металла от руды, скапливание его в растворе;
  • выделение соединения, его очистка;
  • выделение чистого металла из готового химического соединения.
  • Исходный материал для получения вольфрама – шеелит и вольфрамит.

Сферы применения вольфрама

Вольфрам является основой большинства прочных сплавов. Из него делают авиационные двигатели, детали электровакуумных приборов, нити накаливания.
Высокая плотность металла позволяет использовать вольфрам для создания баллистических ракет, пуль, противовесы, артиллерийские снаряды.

Соединения на основе вольфрама применяют для обработки других металлов, в горнодобывающей промышленности (бурение скважин), лакокрасочной, текстильной сфере (как катализатор органического синтеза).

Из сложных вольфрамовых соединений делают:

  • проволоки – используются в нагревательных печах;
  • ленты, фольгу, пластины, листы – для прокатки и плоской ковки.

Титан, хром и вольфрам возглавляют список «Самые твердые металлы в мире». Их используют во многих сферах деятельности человека – авиа и ракетостроении, военной области, строительстве, и при этом, это далеко не полный спектр применения металлов.

Раздел 1. История и нахождение в природе титана.

Титан это элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Дмитрия Ивановича Менделеева, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C. Температура плавления 1660±20 °C.

История и нахождение в природе титана

титан был назван так в честь древнегреческих персонажей Титанов. Назвал его так немецкий химик Мартин Клапрот по своим личным соображениями в отличии от французов которые старались давать названия в соответствии с химическими особенностями элемента, но так как тогда свойства элемента были неизвестны, было выбрано такое название.

Титан является 10 элементов по кол-ву его на нашей планете. Кол-во титана в земной коре равно 0.57 % по массе и 0.001 миллиграмм на 1 литр морской воды. Месторождения титана находятся на территории: Южно Африканской Республики, Украины, Российской Федерации, Казахстана, Японии, Австралии, Индии, Цейлона, Бразилии и Южной Кореи.

По физическим свойствам титан легкий серебристый металл , кроме того характерна высокая вязкость при механической обработке и склонен к прилипанию к режущему инструменту, поэтому используют специальные смазки или напыление для устранения этого эффекта. При комнатной температуре покрывается лассивирующей пленкой оксида TiO2, благодаря этому имеет стойкость к коррозии в большинстве агрессивных сред, кроме щелочей. Титановая пыль имеет свойство взрываться, при этом температура вспышки равна 400 °C. Титановая стружка пожароопасна.

Чтобы произвести титан в чистом виде или его сплавы в большинстве случаев используют диоксид титана с небольшим кол-вом соединений входящих в него. Например, рутиловый концентрат, получаемый при обогащении титановых руд. Но запасы рутила крайне малы и в связи с этим используют так называемый синтетический рутил или титановый шлак, получаемый при обработке ильменитовых концентратов.

Первооткрывателем титана считается 28-летний английский монах Уильям Грегор. В 1790 г., проводя минералогические изыскания в своем приходе, он обратил внимание на распространенность и необычные свойства черного песка в долине Менакэна на юго-западе Британии и принялся его исследовать. В песке священник обнаружил крупицы черного блестящего минерала, притягивающегося обыкновенным магнитом. Полученный в 1925 г. Ван Аркелем и де Буром иодидным методом чистейший титан оказался пластичным и технологичным металлом со многими ценными свойствами, которые привлекли к нему внимание широкого круга конструкторов и инженеров. В 1940 г. Кролль предложил магниетермический способ извлечения титана из руд, который является основным и в настоящее время. В 1947 г. были выпущены первые 45 кг технически чистого титана.


В периодической системе элементов Менделеева Дмитрия Ивановича титан имеет порядковый номер 22. Атомная масса природного титана, вычисленная по результатам исследований его изотопов, составляет 47,926. Итак, ядро нейтрального атома титана содержит 22 протона. Количество же нейтронов, т. е. нейтральных незаряженных частиц, различно: чаще 26, но может колебаться от 24 до 28. Поэтому и число изотопов титана различно. Всего сейчас известно 13 изотопов элемента № 22. Природный титан состоит из смеси пяти стабильных изотопов, наиболее широко представлен титан-48, его доля в природных рудах 73,99%. Титан и другие элементы подгруппы IVВ очень близки по свойствам к элементам подгруппы IIIВ (группы скандия), хотя и отличаются от последних способностью проявлять большую валентность. Сходство титана со скандием, иттрием, а также с элементами подгруппы VВ - ванадием и ниобием выражается и в том, что в природных минералах титан часто встречается вместе с этими элементами. С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди- три- и, тетрасоединения, с серой и элементами ее группы (селеном, теллуром) - моно- и дисульфиды, с кислородом - оксиды, диоксиды и триоксиды.

Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами - интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами. Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных - золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на . В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе купрума и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности и прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана во многих агрессивных средах, в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.


Титан весьма тугоплавкий металл. Долгое время считалось, что он плавится при 1800° С, однако в середине 50-х гг. английские ученые Диардорф и Хейс установили температуру плавления для чистого элементарного титана. Она составила 1668±3° С. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, рений, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте. Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства: низкая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан - легкий металл, его плотность при 0° С составляет всего 4,517 г/см8, а при 100° С - 4,506 г/см3. Титан относится к группе металлов с удельной массой менее 5 г/см3. Сюда входят все щелочные металлы (натрий, кадий, литий, рубидий, цезий) с удельной массой 0,9-1,5 г/см3, магний (1,7 г/см3), (2,7 г/см3) и др. Титан более чем в 1,5 раза тяжелее алюминия , и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см3). Однако, занимая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механическим свойствам во много раз их превосходит.). Титан обладает значительной твердостью: он в 12 раз тверже алюминия, в 4 раза-железа и купрума . Еще одна важная характеристика металла - предел текучести. Чем он выше тем лучше детали из этого металла сопротивляются эксплуатационным нагрузкам. Предел текучести у титана почти в 18 раз выше, чем у алюминия. Удельная прочность сплавов титана может быть повышена в 1,5-2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо , вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.


В отличие от большинства металлов титан обладает значительным электрическим сопротивлением: если электропроводность серебра принять за 100, то электропроводность купрума равна 94, алюминия - 60, железа и платины -15, а титана-всего 3,8. Титан - парамагнитный металл, он не намагничивается, как , в магнитном поле, но и не выталкивается из него, как . Его магнитная восприимчивость очень слаба, это свойство можно использовать при строительстве. Титан обладает сравнительно низкой теплопроводностью, всего 22,07 Вт/(мК), что приблизительно в 3 раза ниже теплопроводности железа, в 7 раз-магния, в 17-20 раз-алюминия и купрума. Соответственно и коэффициент линейного термического расширения у титана ниже, чем у других конструкционных материалов: при 20 С он в 1,5 раза ниже чем у железа, в 2 - у купрума и почти в 3 - у алюминия. Таким образом, титан - плохой проводник электроэнергии и тепла.


Сегодня титановые сплавы широко применяют в авиационной технике. Титановые сплавы в промышленном масштабе впервые были использованы в конструкциях авиационных реактивных двигателей. Применение титана в конструкции реактивных двигателей позволяет уменьшить их массу на 10...25%. В частности, из титановых сплавов изготавливают диски и лопатки компрессора, детали воздухозаборника, направляющего аппарата и крепежные изделия. Титановые сплавы незаменимы для сверхзвуковых самолетов. Рост скоростей полета летательных аппаратов привел к повышению температуры обшивки, в результате чего алюминиевые сплавы перестали удовлетворять требованиям, которые предъявляются авиационной техникой сверхзвуковых скоростей. Температура обшивки в этом случае достигает 246...316 °С. В этих условиях наиболее приемлемым материалом оказались титановые сплавы. В 70-х годах существенно возросло применение титановых сплавов для планера гражданских самолетов. В среднемагистральном самолете ТУ-204 общая масса деталей из титановых сплавов составляет 2570 кг. Постепенно расширяется применение титана в вертолетах, главным образом, для деталей системы несущего винта, привода, а также системы управления. Важное место занимают титановые сплавы в ракетостроении.

Благодаря высокой коррозионной стойкости в морской воде титан и его сплавы находят применение в судостроении для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении. Постепенно области применения титана расширяются. Титан и его сплавы применяют в химической, нефтехимической, целлюлозно-бумажной и пищевой промышленности, цветной металлургии, энергомашиностроении, электронике, ядерной технике, гальванотехнике, при производстве вооружения, для изготовления броневых плит, хирургического инструмента, хирургических имплантатов, опреснительных установок, деталей гоночных автомобилей, спортинвентаря (клюшки для гольфа, снаряжение альпинистов), деталей ручных часов и даже украшений. Азотирование титана приводит к образованию на его поверхности золотистой пленки, по красоте не уступающей настоящему золоту.

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре 0,57 % по массе, в морской воде 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без Российской Федерации ) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта Российской Федерации , запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта Российской Федерации) хватит более, чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана Российской Федерации составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %.

Крупнейший в мире производитель титана — российская организация «ВСМПО-АВИСМА».

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (), а не восстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

В чистом виде и в виде сплавов

Титановый памятник Гагарину на Ленинском проспекте в Москве

металл применяется в: химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной индустрии, сельскохозяйственной промышленности, пищевой промышленности, украшениях для пирсинга, медицинской промышленности (протезы, остеопротезы), стоматологических и эндодонтических инструментах, зубных имплантатах, спортивных товарах, ювелирных предметах торговли (Александр Хомов), мобильных телефонах, лёгких сплавах и т. д. Является важнейшим конструкционным материалом в авиа-, ракето-, кораблестроении.

Титановое литье выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литье по выплавляемым моделям. Из-за технологических трудностей, в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве.

Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов.

Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.

Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.

Титан является одним из наиболее распространённых геттерных материалов, используемых в высоковакуумных насосах.

Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.

Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.

Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.

Карбид титана, диборид титана, карбонитрид титана — важные компоненты сверхтвёрдых материалов для обработки металлов.

Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, т.к. имеет цвет, похожий на .


Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов —- сегнетоэлектрики.

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: , кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, Ni. Нейтральные упрочнители: цирконий, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие. Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации — ВТ6).

В 2005 фирма titanium corporation опубликовала следующую оценку потребления титана в мире:

13 % — бумага;

7 % — машиностроение.

15-25 $ за килограмм, в зависимости от чистоты.

Чистота и марка чернового титана (титановой губки) обычно определяется по её твёрдости, которая зависит от содержания примесей. Наиболее распространены марки ТГ100 и ТГ110.


Сегмент рынка потребительских товаров в настоящее время является наиболее быстро растущим сегментом титанового рынка. В то время как 10 лет назад этот сегмент составлял только 1-2 титанового рынка, сегодня он вырос до 8-10 рынка. В целом потребление титана в производстве потребительских товаров росло примерно в два раза быстрее, чем весь титановый рынок. Использование титана в спорте является наиболее долговременным и занимает наибольшую долю в применении титана в потребительских товарах. Причина популярности использования титана в спортивном инвентаре проста - он позволяет получить превосходящее любой другой металл соотношение веса и прочности. Использование титана в велосипедах началось примерно 25-30 лет назад и было первым применением титана в спортивном инвентаре. В основном используются трубы из сплава Тi3Аl-2.5V АSТМ Grade 9. Другие части производимые из титановых сплавов включают в себя тормоза, звздочки и пружины сидений. Использование титана в производстве клюшек для гольфа впервые началось в конце 80-х - самом начале 90-х годов производителями клюшек в Японии. До 1994-1995 годов это применение титана было практически неизвестно в США и в Европе. Ситуация изменилась, когда Callaway представила на рынок свою титановую клюшку, производимую организацией Ruger titanium и названную Great Big Bertha. В связи с очевидными преимуществами и с помощью хорошо продуманного фирмой Callaway маркетинга, титановые клюшки моментально приобрели огромную популярность. В течение короткого периода времени титановые клюшки прошли путь от эксклюзивного и дорогого инвентаря небольшой группы спекулянтов до широкого использования большинством гольфистов по прежнему оставаясь более дорогими по сравнению со стальными клюшками. Хотелось бы привести основные, по моему мнению, тенденции развития гольфого рынка он прошел путь от высокотехнологичного до массового производства в короткий 4-5 лет следуя путем других производств с высокими трудозатратами таких как производство одежды, игрушек и потребительской электроники, производство гольфовых клюшек ушло в страны с наиболее дешевой рабочей силой сначала на Тайвань, затем в , и сейчас заводы строятся в странах с еще более дешевым трудом, таких как Вьетнам и Таиланд титан определенно используется для драйверов drivers, где его превосходные качества дают очевидное преимущество и оправдывают более высокую цену. Однако, титан пока еще не нашел очень широкого потребления на последующих клюшках, так как значительное увеличение расходов не подкрепляется соответствующим улучшением игры в настоящее время драйверы в основном производятся с кованой ударной поверхностью, кованым или литым верхом и литым низом недавно Профессиональная Гольфовая РОА разрешила увеличить верхний предел так называемого коэффициента возврата, в связи с чем все производители клюшек будут стараться увеличить пружинящие свойства ударной поверхности. Для этого приходится уменьшить толщину ударной поверхности и использовать для нее более прочные сплавы, такие как SР700, 15-3-3-3 и ВТ-23. Теперь остановимся на применении титана и его сплавов на другом спортивном оборудовании. Трубы для гоночных велосипедов и другие детали изготавливают из сплава АSТМ Grade 9 Тi3Аl-2.5V. На удивление значительное количество титанового листа используется при производстве ножей для подводного плавания. Большинство производителей используют сплав Тi6Аl-4V, но этот сплав не обеспечивает долговечность кромки лезвия, как другие более прочные сплавы. Некоторые производители переключаются на использование сплава ВТ23.


Loading...Loading...